Model selection for state-space models

Stephane Shao*
October 4, 2016

in collaboration with Jie Ding† and Pierre E. Jacob*

*Department of Statistics, Harvard University
†School of Engineering and Applied Sciences, Harvard University
1. What is a state-space model?

2. Why not use Bayes factors?

3. A new criterion for model selection

4. Why does it work?

5. How to implement it?

6. Applications and discussion
1. What is a state-space model?

2. Why not use Bayes factors?

3. A new criterion for model selection

4. Why does it work?

5. How to implement it?

6. Applications and discussion
1. What is a state-space model?

2. Why not use Bayes factors?

3. A new criterion for model selection

4. Why does it work?

5. How to implement it?

6. Applications and discussion
Table of contents

1. What is a state-space model?

2. Why not use Bayes factors?

3. A new criterion for model selection

4. Why does it work?

5. How to implement it?

6. Applications and discussion
Table of contents

1. What is a state-space model?

2. Why not use Bayes factors?

3. A new criterion for model selection

4. Why does it work?

5. How to implement it?

6. Applications and discussion
Table of contents

1. What is a state-space model?

2. Why not use Bayes factors?

3. A new criterion for model selection

4. Why does it work?

5. How to implement it?

6. Applications and discussion
What is a state-space model?
What is a state-space model?

- Also known as **Hidden Markov model**
- Class of **time series models** used in various fields like econometrics, bioinformatics, signal processing, target tracking, epidemiology ...

 - Unobserved Markov chain of latent states \(X_{1:T} \equiv (X_1, ..., X_T) \) with
 \[
 X_1 \sim \mu_{\theta} \quad \text{and} \quad X_t | X_{t-1} \sim f_{\theta}(\cdot | X_{t-1}) \quad \text{for} \ t \geq 2
 \]

 - Observations \(Y_{1:T} \equiv (Y_1, ..., Y_T) \) conditionally independent given \(X_{1:T} \) with
 \[
 Y_t | X_t \sim g_{\theta}(\cdot | X_t) \quad \text{for} \ t \geq 1
 \]

 - Prior distribution \(p(\theta) \) on the parameter
What is a state-space model?

- Also known as **Hidden Markov model**
- **Class of time series models** used in various fields like econometrics, bioinformatics, signal processing, target tracking, epidemiology ...

 - Unobserved Markov chain of latent states $X_{1:T} \equiv (X_1, \ldots, X_T)$ with
 $$X_1 \sim \mu_\theta \quad \text{and} \quad X_t \mid X_{t-1} \sim f_\theta(\cdot \mid X_{t-1}) \quad \text{for } t \geq 2$$
 - Observations $Y_{1:T} \equiv (Y_1, \ldots, Y_T)$ conditionally independent given $X_{1:T}$ with
 $$Y_t \mid X_t \sim g_\theta(\cdot \mid X_t) \quad \text{for } t \geq 1$$
 - Prior distribution $p(\theta)$ on the parameter
What is a state-space model?

• Also known as **Hidden Markov model**
• Class of **time series models** used in various fields like econometrics, bioinformatics, signal processing, target tracking, epidemiology ...

![Diagram of state-space model](image)

• Unobserved Markov chain of latent states $X_{1:T} \equiv (X_1, ..., X_T)$ with

 $X_1 \sim \mu_\theta$ and $X_t \mid X_{t-1} \sim f_\theta(\cdot \mid X_{t-1})$ for $t \geq 2$

• Observations $Y_{1:T} \equiv (Y_1, ..., Y_T)$ conditionally independent given $X_{1:T}$ with

 $Y_t \mid X_t \sim g_\theta(\cdot \mid X_t)$ for $t \geq 1$

• Prior distribution $p(\theta)$ on the parameter θ
What is a state-space model?

- Also known as **Hidden Markov model**
- Class of **time series models** used in various fields like econometrics, bioinformatics, signal processing, target tracking, epidemiology ...

\[\begin{align*}
\mu_\theta & \quad X_1 & \quad f_\theta & \quad X_2 & \quad \ldots & \quad X_T \\
\downarrow g_\theta & \quad Y_1 & \quad & \quad Y_2 & \quad \ldots & \quad Y_T
\end{align*} \]

- Unobserved Markov chain of latent states \(X_{1:T} \equiv (X_1, \ldots, X_T) \) with
 \[X_1 \sim \mu_\theta \quad \text{and} \quad X_t \mid X_{t-1} \sim f_\theta(\cdot \mid X_{t-1}) \quad \text{for} \ t \geq 2 \]

- Observations \(Y_{1:T} \equiv (Y_1, \ldots, Y_T) \) conditionally independent given \(X_{1:T} \) with
 \[Y_t \mid X_t \sim g_\theta(\cdot \mid X_t) \quad \text{for} \ t \geq 1 \]

- Prior distribution \(p(\theta) \) on the parameter
What is a state-space model?

- Also known as **Hidden Markov model**
- Class of **time series models** used in various fields like econometrics, bioinformatics, signal processing, target tracking, epidemiology ...

Unobserved Markov chain of latent states $X_{1:T} \equiv (X_1, ..., X_T)$ with

$X_1 \sim \mu_\theta$ and $X_t | X_{t-1} \sim f_\theta (\cdot | X_{t-1})$ for $t \geq 2$

Observations $Y_{1:T} \equiv (Y_1, ..., Y_T)$ conditionally independent given $X_{1:T}$ with

$Y_t | X_t \sim g_\theta (\cdot | X_t)$ for $t \geq 1$

Prior distribution $p(\theta)$ on the parameter
What does the data look like?

- Counts of red kangaroos performed twice on 41 sampling occasions (Knape and Valpine, 2012)
What do the models look like?

Model 1

\[
\frac{dX_t}{X_t} = \left(r + \frac{\sigma^2}{2} - bX_t \right) dt + \sigma dW_t
\]

\[
Y_{1,t} \mid X_t \sim \text{NegBin}(X_t, X_t + \tau X_t^2)
\]

\[
Y_{2,t} \mid X_t \sim \text{NegBin}(X_t, X_t + \tau X_t^2)
\]

\[
b, \sigma, \tau \sim \text{Unif}(0,10)
\]

\[
r \sim \text{Unif}(-10,10)
\]

Model 2

\[
\frac{dX_t}{X_t} = \left(r + \frac{\sigma^2}{2} \right) dt + \sigma dW_t
\]

\[
Y_{1,t} \mid X_t \sim \text{NegBin}(X_t, X_t + \tau X_t^2)
\]

\[
Y_{2,t} \mid X_t \sim \text{NegBin}(X_t, X_t + \tau X_t^2)
\]

\[
\sigma, \tau \sim \text{Unif}(0,10)
\]

\[
r \sim \text{Unif}(-10,10)
\]

Model 3

\[
\frac{dX_t}{X_t} = \left(\frac{\sigma^2}{2} \right) dt + \sigma dW_t
\]

\[
Y_{1,t} \mid X_t \sim \text{NegBin}(X_t, X_t + \tau X_t^2)
\]

\[
Y_{2,t} \mid X_t \sim \text{NegBin}(X_t, X_t + \tau X_t^2)
\]

\[
\sigma, \tau \sim \text{Unif}(0,10)
\]
What is so challenging about state-space models?

The likelihood is unavailable in closed form:

\[
p(y_{1:T} | \theta) = \int \mu_\theta(x_1) \prod_{t=2}^{T} f_\theta(x_t | x_{t-1}) \prod_{t=1}^{T} g_\theta(y_t | x_t) \, dx_{1:T}
\]

which is typically an intractable high-dimensional integral ...

- We are interested in quantities of the form:

 \[
 \mathbb{E} \left[\varphi(\Theta, X_t) \middle| y_{1:t} \right]
 \]

 where \(\mathbb{E} \) is with respect to the joint posterior distribution \(p(\theta, x_{1:t} | y_{1:t}) \)

- The SMC\(^2\) algorithm produces consistent estimators of such expectations assuming we known \(g_\theta \) numerically and can simulate from \(f_\theta \)
 (Chopin, Jacob, and Papaspiliopoulos, 2013)
What is so challenging about state-space models?

The likelihood is unavailable in closed form

\[
p(y_{1:T} | \theta) = \int \mu_\theta(x_1) \prod_{t=2}^{T} f_\theta(x_t | x_{t-1}) \prod_{t=1}^{T} g_\theta(y_t | x_t) \, dx_{1:T}
\]

which is typically an intractable high-dimensional integral ...

- We are interested in quantities of the form:
 \[
 \mathbb{E} \left[\varphi(\Theta, X_t) \bigg| y_{1:t} \right]
 \]
 where \(\mathbb{E} \) is with respect to the joint posterior distribution \(p(\theta, x_{1:t} | y_{1:t}) \)

- The SMC² algorithm produces consistent estimators of such expectations assuming we known \(g_\theta \) numerically and can simulate from \(f_\theta \) (Chopin, Jacob, and Papaspiliopoulos, 2013)
What is so challenging about state-space models?

The likelihood is unavailable in closed form:

\[p(y_{1:T}|\theta) = \int \mu_\theta(x_1) \prod_{t=2}^{T} f_{\theta}(x_t|x_{t-1}) \prod_{t=1}^{T} g_{\theta}(y_t|x_t) \, dx_{1:T} \]

which is typically an intractable high-dimensional integral ...

- We are interested in quantities of the form:
 \[\mathbb{E}\left[\varphi(\Theta, X_t) \mid y_{1:t} \right] \]
 where \(\mathbb{E} \) is with respect to the joint posterior distribution \(p(\theta, x_{1:t}|y_{1:t}) \)

- The SMC\(^2\) algorithm produces consistent estimators of such expectations assuming we known \(g_\theta \) numerically and can simulate from \(f_\theta \) (Chopin, Jacob, and Papaspiliopoulos, 2013)
Why not use Bayes factors?
Bayes factors choose the model M with the largest evidence

$$p(y_{1:T}|M) = \int p(y_{1:T}|\theta, M) p(\theta|M) \, d\theta$$

where $p(\theta|M)$ denotes the prior distribution of θ under model M

Sensitivity to the choice of prior

- Bayes factors do not allow for improper priors
- The evidence for any given model can be made arbitrarily small by making the prior distribution arbitrarily vague

Yet, vague or improper priors often stem from reasonable approaches (genuine non-informativeness, Jeffreys prior, ...)
What can go wrong with Bayes factors?

Bayes factors ¿ choose the model M with the largest evidence

$$p(y_{1:T}|M) = \int p(y_{1:T} | \theta, M) p(\theta | M) \, d\theta$$

where $p(\theta | M)$ denotes the prior distribution of θ under model M

Sensitivity to the choice of prior

• Bayes factors do not allow for improper priors
• The evidence for any given model can be made arbitrarily small by making the prior distribution arbitrarily vague

Yet, vague or improper priors often stem from reasonable approaches (genuine non-informativeness, Jeffreys prior, ...)
What can go wrong with Bayes factors?

Bayes factors \equiv choose the model M with the largest evidence

$$p(y_{1:T}|M) = \int p(y_{1:T}|\theta, M) p(\theta|M) \, d\theta$$

where $p(\theta|M)$ denotes the prior distribution of θ under model M

Sensitivity to the choice of prior

- Bayes factors do not allow for improper priors
- The evidence for any given model can be made arbitrarily small by making the prior distribution arbitrarily vague

Yet, vague or improper priors often stem from reasonable approaches (genuine non-informativeness, Jeffreys prior, ...)
« [...] as pointed out by others, posterior model probabilities and Bayes factors can be sensitive to the priors on the parameters. This was the case for the logistic model M1. Under the alternative uniform priors over the interval (-100, 100) for r and (0, 100) for the other parameters the marginal density was a factor 10^3 times smaller than under the original prior. » (Knape and Valpine, 2012)
« [...] as pointed out by others, posterior model probabilities and Bayes factors can be sensitive to the priors on the parameters. This was the case for the logistic model M1. Under the alternative uniform priors over the interval (-100, 100) for \(r \) and (0, 100) for the other parameters the marginal density was a factor \(10^3 \) times smaller than under the original prior. » (Knape and Valpine, 2012)
Sensitivity of the Bayes Factor to vague priors
A new criterion for model selection
Bayes factors as a decision rule

- Bayes factors choose the model M that maximizes the evidence:
 \[p(y_{1:T}|M) = p(y_1|M) p(y_2|y_1, M) p(y_3|y_{1:2}, M) \ldots p(y_T|y_{1:T-1}, M) \]

- Hence it chooses the model minimizing $-\log(p(y_{1:T}|M))$ or equivalently:
 \[\sum_{t=1}^{T} -\log(p(y_t|y_{1:t-1}, M)) \]

- This is a particular case of a more general decision rule that chooses the model M minimizing the prequential score:
 \[\sum_{t=1}^{T} S\left(y_t, p(dy_t|y_{1:t-1}, M)\right) \]
 for a specific choice of scoring rule $S : (\tilde{y}, q(dy)) \mapsto -\log(q(\tilde{y}))$

- The scoring rule is a loss function that quantifies the performance of the model in terms of probabilistic predictions at each step.
Bayes factors as a decision rule

- Bayes factors choose the model M that maximizes the evidence:

$$p(y_{1:T}|M) = p(y_1|M) \cdot p(y_2|y_1, M) \cdot p(y_3|y_{1:2}, M) \cdots p(y_T|y_{1:T-1}, M)$$

- Hence it chooses the model minimizing $-\log(p(y_{1:T}|M))$ or equivalently:

$$\sum_{t=1}^{T} - \log(p(y_t|y_{1:t-1}, M))$$

- This is a particular case of a more general decision rule that chooses the model M minimizing the prequential score:

$$\sum_{t=1}^{T} S \left(y_t, p(dy_t|y_{1:t-1}, M) \right)$$

for a specific choice of scoring rule $S : (\tilde{y}, q(dy)) \mapsto -\log(q(\tilde{y}))$

- The scoring rule is a loss function that quantifies the performance of the model in terms of probabilistic predictions at each step.
Bayes factors as a decision rule

- Bayes factors choose the model M that maximizes the evidence:

$$p(y_{1:T}|M) = p(y_1|M) p(y_2|y_1, M) p(y_3|y_{1:2}, M) \ldots p(y_T|y_{1:T-1}, M)$$

- Hence it chooses the model minimizing $-\log(p(y_{1:T}|M))$ or equivalently:

$$\sum_{t=1}^{T} - \log(p(y_t|y_{1:t-1}, M))$$

- This is a particular case of a more general decision rule that chooses the model M minimizing the prequential score:

$$\sum_{t=1}^{T} S \left(y_t, p(dy_t|y_{1:t-1}, M) \right)$$

for a specific choice of scoring rule $S : (\tilde{y}, q(dy)) \mapsto -\log(q(\tilde{y}))$

- The scoring rule is a loss function that quantifies the performance of the model in terms of probabilistic predictions at each step.
Bayes factors as a decision rule

• Bayes factors choose the model M that maximizes the evidence:

$$p(y_{1:T}|M) = p(y_1|M) p(y_2|y_1, M) p(y_3|y_{1:2}, M) \ldots p(y_T|y_{1:T-1}, M)$$

• Hence it chooses the model minimizing $-\log(p(y_{1:T}|M))$ or equivalently:

$$\sum_{t=1}^{T} - \log(p(y_t|y_{1:t-1}, M))$$

• This is a particular case of a more general decision rule that chooses the model M minimizing the **prequential score**:

$$\sum_{t=1}^{T} S\left(y_t, p(dy_t|y_{1:t-1}, M)\right)$$

for a specific choice of **scoring rule** $S : (\tilde{y}, q(dy)) \mapsto - \log(q(\tilde{y}))$

• The scoring rule is a **loss function** that quantifies the performance of the model in terms of probabilistic predictions at each step.
What makes a good scoring rule?

- Key idea: replace the log scoring rule by a different scoring rule (Dawid and Musio, 2015)

Propriety

A scoring rule $S(\tilde{y}, q)$ is said to be proper (resp. strictly) if the function $q \mapsto \mathbb{E}_{Y \sim p^*} [S(Y, q)]$ is minimized (resp. uniquely) by $q = p^*$

Locality of order m

A scoring rule $S(\tilde{y}, q)$ is said to be m-local if $S(\tilde{y}, q)$ is only a function of \tilde{y} and the first m derivatives of q all evaluated at \tilde{y}

Homogeneity of order h

A scoring rule $S(\tilde{y}, q)$ is said to be h-homogeneous if it satisfies $S(\tilde{y}, \lambda q) = \lambda^h S(\tilde{y}, q)$ for every \tilde{y} and q, and every $\lambda > 0$

- 0-Homogeneity implies invariance to arbitrary scaling of the prior
- The log scoring rule is strictly proper and 0-local but not homogeneous
What makes a good scoring rule?

- Key idea: replace the log scoring rule by a different scoring rule (Dawid and Musio, 2015)

Propriety

A scoring rule $S(\tilde{y}, q)$ is said to be **proper** (resp. **strictly**) if the function $q \mapsto \mathbb{E}_{y \sim p^*} [S(Y, q)]$ is minimized (resp. **uniquely**) by $q = p^*$

Locality of order m

A scoring rule $S(\tilde{y}, q)$ is said to be **m-local** if $S(\tilde{y}, q)$ is only a function of \tilde{y} and the first m derivatives of q all evaluated at \tilde{y}

Homogeneity of order h

A scoring rule $S(\tilde{y}, q)$ is said to be **h-homogeneous** if it satisfies $S(\tilde{y}, \lambda q) = \lambda^h S(\tilde{y}, q)$ for every \tilde{y} and q, and every $\lambda > 0$

- 0-Homogeneity implies invariance to arbitrary scaling of the prior
- The log scoring rule is strictly proper and 0-local but not homogeneous
What makes a good scoring rule?

• Key idea: replace the log scoring rule by a different scoring rule (Dawid and Musio, 2015)

<table>
<thead>
<tr>
<th>Propriety</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scoring rule $S(\tilde{y}, q)$ is said to be proper (resp. strictly) if the function $q \mapsto \mathbb{E}_{Y \sim p^} [S(Y, q)]$ is minimized (resp. uniquely) by $q = p^$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localility of order m</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scoring rule $S(\tilde{y}, q)$ is said to be m-local if $S(\tilde{y}, q)$ is only a function of \tilde{y} and the first m derivatives of q all evaluated at \tilde{y}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Homogeneity of order h</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scoring rule $S(\tilde{y}, q)$ is said to be h-homogeneous if it satisfies $S(\tilde{y}, \lambda q) = \lambda^h S(\tilde{y}, q)$ for every \tilde{y} and q, and every $\lambda > 0$</td>
</tr>
</tbody>
</table>

• 0-Homogeneity implies invariance to arbitrary scaling of the prior
• The log scoring rule is strictly proper and 0-local **but not homogeneous**
What makes a good scoring rule?

- Key idea: replace the log scoring rule by a different scoring rule (Dawid and Musio, 2015)

Propriety	A scoring rule $S(\tilde{y}, q)$ is said to be proper (resp. strictly) if the function $q \mapsto E_{Y \sim p^*} [S(Y, q)]$ is minimized (resp. uniquely) by $q = p^*$
Localility of order m	A scoring rule $S(\tilde{y}, q)$ is said to be m-local if $S(\tilde{y}, q)$ is only a function of \tilde{y} and the first m derivatives of q all evaluated at \tilde{y}
Homogeneity of order h	A scoring rule $S(\tilde{y}, q)$ is said to be h-homogeneous if it satisfies $S(\tilde{y}, \lambda q) = \lambda^h S(\tilde{y}, q)$ for every \tilde{y} and q, and every $\lambda > 0$

- 0-Homogeneity implies invariance to arbitrary scaling of the prior
- The log scoring rule is strictly proper and 0-local but not homogeneous
What makes a good scoring rule?

- Key idea: replace the log scoring rule by a different scoring rule (Dawid and Musio, 2015)

<table>
<thead>
<tr>
<th>Propriety</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scoring rule (S(\tilde{y}, q)) is said to be proper (resp. strictly) if the function (q \mapsto \mathbb{E}_{Y \sim p^} [S(Y, q)]) is minimized (resp. uniquely) by (q = p^)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locality of order (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scoring rule (S(\tilde{y}, q)) is said to be (m)-local if (S(\tilde{y}, q)) is only a function of (\tilde{y}) and the first (m) derivatives of (q) all evaluated at (\tilde{y})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Homogeneity of order (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A scoring rule (S(\tilde{y}, q)) is said to be (h)-homogeneous if it satisfies (S(\tilde{y}, \lambda q) = \lambda^h S(\tilde{y}, q)) for every (\tilde{y}) and (q), and every (\lambda > 0)</td>
</tr>
</tbody>
</table>

- 0-Homogeneity implies invariance to arbitrary scaling of the prior
- The log scoring rule is strictly proper and 0-local but not homogeneous
• Parry et al. (2012) characterized all the 0-homogeneous strictly proper \(m\)-local scoring rules: they only exist when \(m\) is a positive even integer.

• Thus the "simplest" such scoring rule is the Hyvärinen score:

\[
S_{\mathcal{H}}(\tilde{y}, q) := 2 \frac{d^2 \log q(\tilde{y})}{dy^2} + \left(\frac{d \log q(\tilde{y})}{dy} \right)^2
\]

• It can be extended to discrete observations as follows:

\[
S_{\mathcal{H}}(\tilde{y}, q) := 2 \left(\frac{q(\tilde{y}+1) - q(\tilde{y})}{q(\tilde{y})} - \frac{q(\tilde{y}) - q(\tilde{y}-1)}{q(\tilde{y}-1)} \right) + \left(\frac{q(\tilde{y}+1) - q(\tilde{y})}{q(\tilde{y})} \right)^2
\]

New model selection criterion

Choose the model \(M\) that minimizes the prequential Hyvärinen score:

\[
\sum_{t=1}^{T} S_{\mathcal{H}}(y_t, p(dy_t|y_{1:t-1}, M))
\]
Hyvärinen score

- Parry et al. (2012) characterized all the 0-homogeneous strictly proper \(m \)-local scoring rules: they only exist when \(m \) is a positive even integer
- Thus the "simplest" such scoring rule is the Hyvärinen score

\[
S_H(\tilde{\gamma}, q) := 2 \frac{d^2 \log q(\tilde{\gamma})}{d\gamma^2} + \left(\frac{d \log q(\tilde{\gamma})}{d\gamma} \right)^2
\]

- It can be extended to discrete observations as follows:

\[
S_H(\tilde{\gamma}, q) := 2 \left(\frac{q(\tilde{\gamma}+1) - q(\tilde{\gamma})}{q(\tilde{\gamma})} - \frac{q(\tilde{\gamma}) - q(\tilde{\gamma}-1)}{q(\tilde{\gamma}-1)} \right) + \left(\frac{q(\tilde{\gamma}+1) - q(\tilde{\gamma})}{q(\tilde{\gamma})} \right)^2
\]

New model selection criterion

Choose the model \(M \) that minimizes the prequential Hyvärinen score

\[
\sum_{t=1}^{T} S_H(y_t, p(dy_t|y_{1:t-1}, M))
\]
• Parry et al. (2012) characterized all the 0-homogeneous strictly proper \(m \)-local scoring rules: they only exist when \(m \) is a positive even integer.

• Thus the ”simplest” such scoring rule is the **Hyvärinen score**

\[
S_H(\tilde{y}, q) := 2 \frac{d^2 \log q(\tilde{y})}{dy^2} + \left(\frac{d \log q(\tilde{y})}{dy} \right)^2
\]

• It can be extended to discrete observations as follows:

\[
S_H(\tilde{y}, q) := 2 \left(\frac{q(\tilde{y}+1) - q(\tilde{y})}{q(\tilde{y})} - \frac{q(\tilde{y}) - q(\tilde{y}-1)}{q(\tilde{y}-1)} \right) + \left(\frac{q(\tilde{y}+1) - q(\tilde{y})}{q(\tilde{y})} \right)^2
\]

New model selection criterion

Choose the model \(M \) that minimizes the prequential Hyvärinen score

\[
\sum_{t=1}^{T} S_H(y_t, p(dy_t|y_{1:t-1}, M))
\]
Parry et al. (2012) characterized all the 0-homogeneous strictly proper \(m \)-local scoring rules: they only exist when \(m \) is a positive even integer.

Thus the "simplest" such scoring rule is the \textbf{Hyvärinen score}

\[
S_H(\tilde{y}, q) := 2 \frac{d^2 \log q(\tilde{y})}{dy^2} + \left(\frac{d \log q(\tilde{y})}{dy} \right)^2
\]

It can be extended to discrete observations as follows:

\[
S_H(\tilde{y}, q) := 2 \left(\frac{q(\tilde{y}+1) - q(\tilde{y})}{q(\tilde{y})} - \frac{q(\tilde{y}) - q(\tilde{y}-1)}{q(\tilde{y}-1)} \right) + \left(\frac{q(\tilde{y}+1) - q(\tilde{y})}{q(\tilde{y})} \right)^2
\]

\textbf{New model selection criterion}

Choose the model \(M \) that minimizes the \textbf{prequential Hyvärinen score}

\[
\sum_{t=1}^{T} S_H (y_t, p(dy_t | y_{1:t-1}, M))
\]
Why does it work?
Theoretical justifications and guarantees

- Principled approach that is justified for any finite sample size by the framework of Decision Theory (Bernardo and Smith, 2000)

- Consistency: when comparing the true model with any other misspecified model, we end up choosing the true model as $T \rightarrow +\infty$

†_P^*-almost surely, where P^* denotes the true data generating distribution of $(Y_t)_{t \geq 1}$
Theoretical justifications and guarantees

- Principled approach that is justified for any finite sample size by the framework of Decision Theory (Bernardo and Smith, 2000)

- Consistency: when comparing the true model with any other misspecified model, we end up choosing\(^\dagger\) the true model as \(T \rightarrow +\infty\)

\(^\dagger\)\(\mathbb{P}^*\)-almost surely, where \(\mathbb{P}^*\) denotes the true data generating distribution of \((Y_t)_{t \geq 1}\)
How to implement it?
Hyvärinen score as an expectation of known quantities

• Let’s fix some arbitrary model (and drop the conditioning on M)

• The prequential Hyvärinen score turns out* to be exactly equal to:

$$
\sum_{t=1}^{T} \left(2 \mathbb{E}_t \left[\frac{d^2 \log g_\Theta(y_t|X_t)}{dy^2} \right] + \left(\frac{d \log g_\Theta(y_t|X_t)}{dy} \right)^2 \right) - \left(\mathbb{E}_t \left[\frac{d \log g_\Theta(y_t|X_t)}{dy} \right] \right)^2
$$

where \mathbb{E}_t denotes the expectation with respect to $(\Theta, X_t) \sim p(\theta, x_t|y_{1:t})$

• This only involves expectations with respect to the successive posterior distributions $p(\theta, x_t|y_{1:t})$ of known quantities

 \longrightarrow We can use SMC² to estimate it consistently

• Similar approach holds for discrete observations

*After some non-trivial derivation.
Hyvärinen score as an expectation of known quantities

• Let’s fix some arbitrary model (and drop the conditioning on M).
• The prequential Hyvärinen score turns out* to be exactly equal to:

\[
\sum_{t=1}^{T} \left(2 \mathbb{E}_t \left[\frac{d^2 \log g_\Theta(y_t|X_t)}{dy^2} \right] + \left(\frac{d \log g_\Theta(y_t|X_t)}{dy} \right)^2 \right) - \left(\mathbb{E}_t \left[\frac{d \log g_\Theta(y_t|X_t)}{dy} \right] \right)^2
\]

where \mathbb{E}_t denotes the expectation with respect to $(\Theta, X_t) \sim p(\theta, x_t|1:t)$

• This only involves expectations with respect to the successive posterior distributions $p(\theta, x_t|1:t)$ of known quantities.

\[\longrightarrow\text{ We can use SMC}^2\text{ to estimate it consistently}\]

• Similar approach holds for discrete observations.

*After some non-trivial derivation.
Hyvärinen score as an expectation of known quantities

- Let’s fix some arbitrary model (and drop the conditioning on M)
- The prequential Hyvärinen score turns out* to be exactly equal to:

$$
\sum_{t=1}^{T} \left(2 \mathbb{E}_t \left(\frac{d^2 \log p(\theta, x_t | y_1^t)}{dy^2} + \left(\frac{d \log p(\theta, x_t | y_1^t)}{dy} \right)^2 \right) - \left(\mathbb{E}_t \left(\frac{d \log p(\theta, x_t | y_1^t)}{dy} \right) \right)^2 \right)
$$

where \mathbb{E}_t denotes the expectation with respect to $(\Theta, X_t) \sim p(\theta, x_t | y_1^t)$

- This only involves expectations with respect to the successive posterior distributions $p(\theta, x_t | y_1^t)$ of known quantities

 \longrightarrow We can use SMC2 to estimate it consistently

- Similar approach holds for discrete observations

*After some non-trivial derivation.
Applications and discussion
Jumping back to kangaroos

- The prequential Hyvärinen score is insensitive to arbitrary vagueness of the prior distribution (as expected)
Comparing all three models

- Lower = Better
- Need more particles (or more data) to choose between models 2 and 3
Summary

Advantages of prequential Hyvärinen score

- Allows for improper priors
- Not sensitive to arbitrary vagueness of priors
- Can be estimated consistently in a sequential fashion via SMC2 by only knowing g_θ numerically and being able to simulate from f_θ

Possible limitations

- Computational cost induced by SMC2

- Further work: applications to stochastic volatility models, neuroscience data, epidemic models, and more ...
- R package on its way, for everyone to use
Questions ?
References (1/2)

J. M. Bernardo and A. F. M. Smith.
Bayesian Theory.

N. Chopin, P. E. Jacob, and O. Papaspiliopoulos.
SMC2: an efficient algorithm for sequential analysis of state-space models.

A. P. Dawid, S. Lauritzen, and M. Parry.
Proper local scoring rules on discrete sample spaces.

A. P. Dawid and M. Musio.
Bayesian model selection based on proper scoring rules.
J. Knape and P. D. Valpine.
Fitting complex population models by combining particle filters with markov chain monte carlo.

A. O’Hagan.
Fractional bayes factor for model comparison.

M. Parry, A. P. Dawid, and S. Lauritzen.
Proper local scoring rules.
• Let \(y = (y_1, \ldots, y_{d_y})^\top \in \mathbb{R}^{d_y} \)

• Then the Hyvärinen score is defined as:

\[
S_H(\tilde{y}, q) := 2\Delta_y \log q(\tilde{y}) + \|\nabla_y \log q(\tilde{y})\|^2
\]

• Which is exactly equal to:

\[
\sum_{t=1}^{T} \sum_{k=1}^{d_y} \left(2\mathbb{E}_t \left[\frac{\partial^2 \log g_\Theta(y_t|X_t)}{\partial y(k)^2} + \left(\frac{\partial \log g_\Theta(y_t|X_t)}{\partial y(k)} \right)^2 \right] - \left(\mathbb{E}_t \left[\frac{\partial \log g_\Theta(y_t|X_t)}{\partial y(k)} \right] \right)^2 \right)
\]
Multivariate observations (discrete case)

• Let \(\tilde{\mathbf{y}} \equiv (\tilde{y}_1, \ldots, \tilde{y}_{d_y})^\top \) taking finite values in \(\mathbf{Y} := [a_1, b_1] \times \ldots \times [a_{d_y}, b_{d_y}] \) where \(a_k, b_k \in \mathbb{Z} \cup \{-\infty, +\infty\} \) with \(a_k < b_k \) for each \(k \).

• Let \(e^{(k)} \in \mathbb{Z}^{d_y} \) such that \(e^{(k)}_{(j)} = \delta_{jk} \)

• Then the discrete Hyvärinen score can be defined as:

\[
S_{\mathcal{H}}(\tilde{\mathbf{y}}, q) := \sum_{k=1}^{d_y} S_{\mathcal{B}_k}(\tilde{\mathbf{y}}, q)
\]

where:

\[
S_{\mathcal{B}_k}(\tilde{\mathbf{y}}, q) := \begin{cases}
-2 \left(\frac{q(\tilde{\mathbf{y}}) - q(\tilde{\mathbf{y}} - e^{(k)})}{q(\tilde{\mathbf{y}} - e^{(k)})} \right) & \text{if } \tilde{\mathbf{y}}(k) = b_k \\
2 \left(\frac{q(\tilde{\mathbf{y}} + e^{(k)}) - q(\tilde{\mathbf{y}})}{q(\tilde{\mathbf{y}})} - \frac{q(\tilde{\mathbf{y}} - e^{(k)})}{q(\tilde{\mathbf{y}} - e^{(k)})} \right) + \left(\frac{q(\tilde{\mathbf{y}} + e^{(k)}) - q(\tilde{\mathbf{y}})}{q(\tilde{\mathbf{y}})} \right)^2 & \text{if } a_k < \tilde{\mathbf{y}}(k) < b_k \\
2 \left(\frac{q(\tilde{\mathbf{y}} + e^{(k)}) - q(\tilde{\mathbf{y}})}{q(\tilde{\mathbf{y}})} \right) + \left(\frac{q(\tilde{\mathbf{y}} + e^{(k)}) - q(\tilde{\mathbf{y}})}{q(\tilde{\mathbf{y}})} \right)^2 & \text{if } \tilde{\mathbf{y}}(k) = a_k
\end{cases}
\]
Prequential vs. Batch approach

- Notice that, unlike for the log scoring rule, here we have:

\[
\sum_{t=1}^{T} S_H(y_t, p(dy_t|y_{1:t-1}, M)) \neq S_H(y_{1:T}, p(dy_{1:T}|M))
\]

- "Batch" version*:
 - Easier to compute, only requires to estimate final evidence \(p(y_{1:T}|M) \)
 - But typically inconsistent

- Prequential version:
 - Generally consistent
 - Requires to estimate all the intermediary predictive \(p(dy_t|y_{1:t-1}, M) \), but this can be achieved by using algorithms like SMC^2

*On the right hand side.
Prequential vs. Batch approach

• Notice that, unlike for the log scoring rule, here we have:

\[
\sum_{t=1}^{T} S_H \left(y_t, p(dy_t|y_{1:t-1}, M) \right) \neq S_H \left(y_{1:T}, p(dy_{1:T}|M) \right)
\]

• "Batch" version*:
 • Easier to compute, only requires to estimate final evidence \(p(y_{1:T}|M) \)
 • But typically inconsistent

• Prequential version:
 • Generally consistent
 • Requires to estimate all the intermediary predictive \(p(dy_t|y_{1:t-1}, M) \), but this can be achieved by using algorithms like SMC²

*On the right hand side.
Prequential vs. Batch approach

- Notice that, unlike for the log scoring rule, here we have:
 \[\sum_{t=1}^{T} S_{\mathcal{H}} (y_t, p(dy_t|y_{1:t-1}, M)) \neq S_{\mathcal{H}} (y_{1:T}, p(dy_{1:T}|M)) \]

- "Batch" version*:
 - Easier to compute, only requires to estimate final evidence \(p(y_{1:T}|M) \)
 - But typically inconsistent

- Prequential version:
 - Generally consistent
 - Requires to estimate all the intermediary predictive \(p(dy_t|y_{1:t-1}, M) \), but this can be achieved by using algorithms like SMC^2

*On the right hand side.
Partial Bayes factors

• Split the data $y_{1:T}$ into a training set $y_{1:m}$ and another set $y_{m+1:T}$ for some choice of m

• Idea: condition on the training set to make the prior proper (or less vague) then compute the Bayes factor on the remaining data

• Essentially we replace the prior $p(\theta|M)$ by the posterior given the training set $p(\theta|y_{1:m}, M)$, and compute the usual Bayes factor on the remaining data set $y_{m+1:T}$

• The partial Bayes factor between Models M_1 and M_2 is defined as:

$$\frac{p(y_{m+1:T}|y_{1:m}, M_1)}{p(y_{m+1:T}|y_{1:m}, M_2)}$$

• Drawback: choice of m is a bit ad-hoc, not ideal to "waste" data for the training set especially in setting with few observations (cf. Red Kangaroos example where $T = 41$)
Fractional Bayes factors

- In the setting of partial Bayes factors, if m and T are both large, the likelihood $p(y_{1:m} \mid \theta, M)$ of the training set will approximate (at least in the i.i.d. case) the full likelihood raised to a power $b \equiv m/T$

- For a given model M we define:

$$q_b(y_{1:T} \mid M) := \frac{\int p(\theta \mid M)p(y_{1:T} \mid \theta, M) d\theta}{\int p(\theta \mid M)p(y_{1:T} \mid \theta, M)^b d\theta}$$

which approximates $p(y_{m+1:T} \mid y_{1:m}, M)$ for large m and T

- The fractional Bayes factor between Models M_1 and M_2 is defined as:

$$\frac{q_b(y_{1:T} \mid M_1)}{q_b(y_{1:T} \mid M_2)}$$

- Drawback: choice of b is a bit ad-hoc, not very principled for small sample size since the main justification relies on asymptotics