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a b s t r a c t

Randomization ensures that observed and unobserved covariates are balanced, on
average. However, randomizing units to treatment and control often leads to covariate
imbalances in realization, and such imbalances can inflate the variance of estimators of
the treatment effect. One solution to this problem is rerandomization – an experimental
design strategy that randomizes units until some balance criterion is fulfilled – which
yields more precise estimators of the treatment effect if covariates are correlated with
the outcome. Most rerandomization schemes in the literature utilize the Mahalanobis
distance, which may not be preferable when covariates are high-dimensional or highly
correlated with each other. As an alternative, we introduce an experimental design
strategy called ridge rerandomization, which utilizes a modified Mahalanobis distance
that addresses collinearities among covariates. This modified Mahalanobis distance has
connections to principal components and the Euclidean distance, and – to our knowledge
– has remained unexplored. We establish several theoretical properties of this modified
Mahalanobis distance and our ridge rerandomization scheme. These results guarantee
that ridge rerandomization is preferable over randomization and suggest when ridge
rerandomization is preferable over standard rerandomization schemes. We also provide
simulation evidence that suggests that ridge rerandomization is particularly preferable
over typical rerandomization schemes in high-dimensional or high-collinearity settings.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Randomized experiments are often considered the ‘‘gold standard" of scientific investigations because, on average,
randomization balances all potential confounders, both observed and unobserved (Krause and Howard, 2003). However,
many have noted that randomized experiments can yield ‘‘bad allocations’’, where some covariates are not well-balanced
across treatment groups (Seidenfeld, 1981; Lindley, 1982; Papineau, 1994; Rosenberger and Sverdlov, 2008). Covariate
imbalance among different treatment groups complicates the interpretation of estimated causal effects, and thus covariate
adjustments are often employed, typically through regression or other comparable methods.

However, it would be better to prevent such covariate imbalances from occurring before treatment is administered,
rather than depend on assumptions for covariate adjustment post-treatment which may not hold (Freedman, 2008). One
common experimental design tool is blocking, where units are first grouped together based on categorical covariates, and
then treatment is randomized within these groups. However, blocking is less intuitive when there are non-categorical
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covariates. A more recent experimental design tool that prevents covariate imbalance and allows for non-categorical
covariates is the rerandomization scheme of Morgan and Rubin (2012), where units are randomized until a prespecified
level of covariate balance is achieved. Rerandomization has been discussed as early as R.A. Fisher (e.g., see Fisher, 1992),
and more recent works (e.g., Cox, 2009; Bruhn and McKenzie, 2009; Worrall, 2010) recommend rerandomization. Morgan
and Rubin (2012) formalized these recommendations in treatment-versus-control settings and was one of the first works
to establish a theoretical framework for rerandomization schemes. Since Morgan and Rubin (2012), several extensions
have been made. Morgan and Rubin (2015) developed rerandomization for treatment-versus-control experiments where
there are tiers of covariates that vary in importance; Branson et al. (2016) extended rerandomization to 2K factorial
designs; and Zhou et al. (2018) developed a rerandomization scheme for sequential designs. Finally, Li et al. (2018)
established asymptotic results for the rerandomization schemes considered in Morgan and Rubin (2012, 2015), and Li
and Ding (2020) established asymptotic results for regression adjustment combined with rerandomization.

All of these works focus on using an omnibus measure of covariate balance – the Mahalanobis distance (Maha-
lanobis, 1936) – during the rerandomization scheme. The Mahalanobis distance is well-known within the matching and
observational study literature, where it is used to find subsets of the treatment and control that are similar (Rubin,
1974; Rosenbaum and Rubin, 1985; Gu and Rosenbaum, 1993; Rubin and Thomas, 2000). The Mahalanobis distance is
particularly useful in rerandomization schemes because (1) it is symmetric in the treatment assignment, which leads to
unbiased estimators of the average treatment effect under rerandomization; and (2) it is equal-percent variance reducing
if the covariates are ellipsoidally symmetric, meaning that rerandomization using the Mahalanobis distance reduces the
variance of all covariate mean differences by the same percentage (Morgan and Rubin, 2012).

However, the Mahalanobis distance is known to perform poorly in matching for observational studies when there are
strong collinearities among the covariates or there are many covariates (Gu and Rosenbaum, 1993; Olsen, 1997; Stuart,
2010). One reason for this is that matching using the Mahalanobis distance places equal importance on balancing all
covariates as well as their interactions (Stuart, 2010), and this issue also occurs in rerandomization schemes that use
the Mahalanobis distance. This issue was partially addressed by Morgan and Rubin (2015), who proposed an extension
of Morgan and Rubin (2012) that incorporates tiers of covariates that vary in importance, such that the most important
covariates receive the most variance reduction. However, this requires researchers to specify an explicit hierarchy of
importance for the covariates, which might be difficult, especially when the number of covariates is large. Furthermore,
it is unclear how to conduct current rerandomization schemes if collinearity is so severe that the covariance matrix of
covariates is degenerate, and thus the Mahalanobis distance is undefined.

As an alternative, we consider a rerandomization scheme using a modified Mahalanobis distance that inflates the
eigenvalues of the covariates’ covariance matrix to alleviate collinearities among the covariates, which has connections to
ridge regression (Hoerl and Kennard, 1970). Such a quantity has remained largely unexplored in the literature. First we
establish several theoretical properties about this quantity, as well as several properties about a rerandomization scheme
that uses this quantity. In particular, instead of reducing the variance of all covariates equally, ridge rerandomization
increases the variance reduction of the first principal components of the covariate space at the expense of decreasing the
variance reduction of the last principal components. We show through simulation that a rerandomization scheme that
incorporates this modified criterion can be beneficial in terms of variance reduction when there are strong collinearities
among the covariates. We also discuss how this modified Mahalanobis distance connects to other criteria, such as principal
components and the Euclidean distance. Because the rerandomization literature has focused almost exclusively on the
Mahalanobis distance, this work also contributes to the literature by exploring the use of other criteria besides the
Mahalanobis distance for rerandomization schemes.

The remainder of this paper is organized as follows. In Section 2, we introduce the notation that will be used
throughout the paper. In Section 3, we review the rerandomization scheme of Morgan and Rubin (2012). In Section 4,
we outline our proposed rerandomization approach and establish several theoretical properties of this approach, as well
as several theoretical properties about the modified Mahalanobis distance. In Section 5, we provide simulation evidence
that suggests that our rerandomization approach is often preferable over other rerandomization approaches, particularly
in high-dimensional or high-collinearity settings. In Section 6, we conclude with a discussion of future work.

2. Notation

We use the colon notation λ1:K = (λ1, . . . , λK ) ∈ RK for tuples of objects, and we let f (λ1:K ) = (f (λ1), . . . , f (λK )) for
any univariate function f : R → R. We respectively denote by IN and 1N the N×N identity matrix and the N-dimensional
column vector whose coefficients are all equal to 1. Given a matrix A, we denote by Aij its (i, j)-coefficient, Ai• its ith row,
A•j its jth column, A⊤ its transpose, and tr(A) its trace when A is square. Given two symmetric matrices A and B of the
same size, we write A > B (resp. A ≥ B) if the matrix A − B is positive definite (resp. semi-definite).

Let x be the N×K matrix representing K covariates measured on N experimental units. LetWi = 1 if unit i is assigned to
treatment and 0 otherwise, and let W = (W1 . . . WN )⊤. Unless stated otherwise, we will focus on completely randomized
experiments (Imbens and Rubin, 2015, see Definition 4.2) with a fixed number of NT treated units and NC = N − NT
control units. For a given assignment vector W, we define x̄T = N−1

T x⊤W and x̄C = N−1
C x⊤ (1N − W) as the respective

covariate mean vectors within treatment and control.
For completely randomized experiments, the covariance matrix of the covariate mean differences is Σ

= Cov(x̄T − x̄C | x) = NN−1
T N−1

C S2x , where S2x = (N − 1)−1(x − 1N x̄N )⊤(x − 1N x̄N ) is the sample covariance matrix of
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x with x̄N = N−11⊤

N x (Morgan and Rubin, 2012). Throughout, we use Σ to refer to this fixed covariance matrix, and we
assume Σ > 0. The spectral decomposition ensures that Σ is diagonalizable with eigenvalues λ1 ≥ · · · ≥ λK > 0. Let Γ be
the orthogonal matrix of corresponding eigenvectors, so that we may write Σ = ΓDiag(λ1:K )Γ⊤, where Diag(λ1:K ) denotes
the K × K diagonal matrix whose (k, k)-coefficient is λk. Thus, Σ and its eigenstructure are available in closed-form, and
the latter coincides with the eigenstructure of S2x up to a scaling factor.

We let χ2
K denote a chi-squared distribution with K degrees of freedom, P(χ2

K ≤ a) its cumulative distribution function
(CDF) evaluated at a ∈ R, and qχ2

K
(p) its p-quantile for p ∈ (0, 1).

3. Review of rerandomization

We follow the potential outcomes framework (Rubin, 1990, 2005), where each unit i has fixed potential outcomes Yi(1)
and Yi(0), which denote the outcome for unit i under treatment and control, respectively. Thus, the observed outcome for
unit i is yobsi = WiYi(1)+ (1−Wi)Yi(0). Define yobs = (yobs1 . . . yobsN )⊤ as the vector of observed outcomes. We focus on the
average treatment effect as the causal estimand, defined as

τ =
1
N

N∑
i=1

[Yi(1) − Yi(0)]. (1)

Furthermore, we focus on the mean-difference estimator

τ̂ = ȳT − ȳC , (2)

where ȳT = N−1
T W⊤yobs and ȳC = N−1

C (1N −W)⊤yobs are the average treatment and control outcomes, respectively. When
conducting a randomized experiment, ideally we would like x̄T and x̄C to be close; otherwise, the estimator τ̂ could be
confounded by imbalances in the covariate means.

Morgan and Rubin (2012) focused on a rerandomization scheme using the Mahalanobis distance to ensure that the
covariate means are reasonably balanced for a particular treatment assignment. The Mahalanobis distance between the
treatment and control covariate means is defined as

M = (x̄T − x̄C )⊤Σ−1(x̄T − x̄C ), (3)

where the dependence of M on the assignment vector W is implicit through (x̄T − x̄C ). Morgan and Rubin (2012) suggest
randomizing units to treatment and control by performing independent draws from the distribution of W | x until M ≤ a
for some threshold a ≥ 0. Hereafter, we refer to this procedure of randomizing units until M ≤ a as rerandomization.
The expected number of draws until the first acceptable randomization is equal to 1/pa, where pa = P(M ≤ a | x) is
the probability that a particular realization of W yields a Mahalanobis distance M less than or equal to a. Thus, fixing
pa effectively allocates an expected computational budget and induces a corresponding threshold a: the smaller the
acceptance probability pa, the smaller the threshold a and thus the more balanced the two groups, but the larger the
expected computational cost of drawing an acceptable W. For example, to restrict rerandomization to the ‘‘best’’ 1%
randomizations, one would set pa = 0.01, which implicitly sets a equal to the pa-quantile of the distribution of M given x.
If one assumes (x̄T − x̄C ) | x ∼ N (0,Σ), then M | x ∼ χ2

K , so that a can be chosen equal to the pa-quantile of a chi-squared
distribution with K degrees of freedom. The assumption (x̄T − x̄C ) | x ∼ N (0,Σ) can be justified by invoking the finite
population Central Limit Theorem (Erdös and Rényi, 1959; Li and Ding, 2017). When the distribution of M | x is unknown,
one can approximate it via Monte Carlo by simulating independent draws of M | x and setting a to the pa-quantile of M ’s
empirical distribution.

Morgan and Rubin (2012) established that the mean-difference estimator τ̂ under this rerandomization scheme is
unbiased in estimating the average treatment effect τ , i.e., that E

[
τ̂ | x,M ≤ a

]
= τ . Furthermore, they also established

that under rerandomization, if NT = NC and (x̄T − x̄C ) | x ∼ N (0,Σ), then not only are the covariate mean differences
centered at 0, i.e., E [x̄T − x̄C | x,M ≤ a] = 0, but also they are more closely concentrated around 0 than they would be
under randomization. More precisely, Morgan and Rubin (2012) proved that

Cov(x̄T − x̄C | x,M ≤ a) = vaCov(x̄T − x̄C | x), (4)

with va =
P(χ2

K+2 ≤ a)

P(χ2
K ≤ a)

∈ (0, 1). (5)

Therefore, under their assumptions, rerandomization using the Mahalanobis distance reduces the variance of each
covariate mean difference by 100(1 − va)% compared to randomization. Morgan and Rubin (2012) call this last property
equally percent variance reducing (EPVR). Thus, using the Mahalanobis distance for rerandomization can be quite appealing,
but Morgan and Rubin (2012) rightly point out that non-EPVR rerandomization schemes may be preferable in settings
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with covariates of unequal importance. This is in part addressed by Morgan and Rubin (2015), who developed a
rerandomization scheme that incorporates tiers of covariates that vary in importance. However, this requires researchers
to specify an explicit hierarchy of covariate importance, which may not be immediately clear, especially when the number
of covariates is large. Furthermore, if there are strong collinearities amongst covariates such that Σ is degenerate and thus
the M in (3) is undefined, then it is unclear how one should conduct the rerandomization scheme of Morgan and Rubin
(2012) and its extensions (Morgan and Rubin, 2015; Branson et al., 2016; Li et al., 2018; Li and Ding, 2020).

4. Ridge rerandomization

As an alternative, we consider a modified Mahalanobis distance, defined as

Mλ = (x̄T − x̄C )⊤(Σ + λ IK )−1(x̄T − x̄C ) (6)

for some prespecified λ ≥ 0. Guidelines for choosing λ will be provided in Section 4.2. The eigenvalues of Σ in (6)
are inflated in a way that is reminiscent of ridge regression (Hoerl and Kennard, 1970). For this reason, we will refer
to the quantity Mλ as the ridge Mahalanobis distance. To our knowledge, the ridge Mahalanobis distance has remained
largely unexplored, except for Kato et al. (1999), who used it in an application for a Chinese and Japanese character
recognition system. Our proposed rerandomization scheme, referred to as ridge rerandomization, involves using the ridge
Mahalanobis distance in place of the standard Mahalanobis distance within the rerandomization framework of Morgan
and Rubin (2012). In other words, one randomizes the assignment vector W until Mλ ≤ aλ for some threshold aλ ≥ 0.

In order to make a fair comparison between rerandomization and ridge rerandomization, we will fix the expected
computational cost of ridge rerandomization by calibrating the respective thresholds so that

P(Mλ ≤ aλ | x) = P(M ≤ a | x) = pa. (7)

Thus, fixing pa implicitly determines the pair (λ, aλ), so that for every fixed λ ≥ 0 and pa ∈ (0, 1) corresponds to a unique
aλ that satisfies (7).

As we will discuss in Section 4.3, the ridge Mahalanobis distance alleviates collinearity among the covariate mean
differences by placing higher importance on the directions that account for the most variation. In that section we also
discuss how ridge rerandomization encapsulates a spectrum of other standard rerandomization schemes. But first, in
Section 4.1 we establish several theoretical properties of ridge rerandomization for some prespecified (λ, aλ), and in
Section 4.2 we provide guidelines for specifying (λ, aλ). In Section 4.4, we discuss how to conduct inference for the average
treatment effect τ after ridge rerandomization is used to design a randomized experiment.

4.1. Properties of ridge rerandomization

The following theorem establishes that, on average, the covariate means in the treatment and control groups are
balanced under ridge rerandomization, and that τ̂ is an unbiased estimator of τ under ridge rerandomization.

Theorem 4.1 (Unbiasedness Under Ridge Rerandomization). Let λ ≥ 0 and aλ ≥ 0 be some prespecified constants. If NT = NC ,
then

E[x̄T − x̄C | x,Mλ ≤ aλ] = 0

and

E[τ̂ | x,Mλ ≤ aλ] = τ .

Theorem 4.1 is a particular case of Theorem 2.1 and Corollary 2.2 from Morgan and Rubin (2012). Theorem 4.1 follows
from the symmetry ofMλ in treatment and control, in the sense that both assignmentsW and (1N−W) yield the same value
of Mλ. From Morgan and Rubin (2012), we even have the stronger result that E[V̄T −V̄C | x,Mλ ≤ aλ] = 0 for any covariate
V , regardless of whether V is observed or not. While it may seem stringent to require that NT = NC , Morgan and Rubin
(2012) demonstrate a simple counterexample where rerandomization also yields biased treatment effect estimates when
NT ̸= NC . However, Morgan and Rubin (2015, Section 3.2) conjectured that this bias was small for even moderate sample
sizes, and Li et al. (2018) formalized this conjecture by showing that τ̂ is asymptotically unbiased under rerandomization
even when NT ̸= NC . While asymptotic properties of ridge rerandomization are outside the scope of this work, we can
similarly conjecture that the bias of τ̂ under ridge rerandomization will be small for moderate sample sizes, even when
NT ̸= NC . We discuss simulation results that validate this conjecture in Section 5.4.

Now we establish the covariance structure of (x̄T − x̄C ) under ridge rerandomization. To do this, we first derive the
exact distribution of Mλ. The following lemma establishes that if we assume (x̄T −x̄C ) | x ∼ N (0,Σ), then Mλ is distributed
as a weighted sum of K independent χ2

1 random variables, where the sizes of the weights are ordered in the same fashion
as the sizes of the eigenvalues of Σ.
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Lemma 4.1 (Distribution of Mλ). Let λ ≥ 0 be some prespecified constant. If (x̄T − x̄C ) | x ∼ N (0,Σ), then

Mλ | x ∼

K∑
j=1

λj

λj + λ
Z2
j (8)

where Z1, . . . , ZK
i.i.d.
∼ N(0, 1) and λ1 ≥ · · · ≥ λK > 0 are the eigenvalues of Σ.

The proof of Lemma 4.1 is provided in the Appendix; see Appendix A.1. Under the Normality assumption, the
representation in (8) provides a straightforward way to simulate independent draws of Mλ, despite its CDF being typically
intractable and requiring numerical approximations (e.g., see Bodenham and Adams, 2016, and references therein).

We will find that the covariance structure of (x̄T − x̄C ) under ridge rerandomization depends on the conditional
expectations E[Z2

k |x,Mλ ≤ aλ], where k = 1, . . . , K and Z1, . . . , ZK
i.i.d.
∼ N(0, 1). The following lemma establishes a property

that will be helpful for characterizing these conditional expectations.

Lemma 4.2 (Conditional Expectations of Constrained Non-Negative Random Variables). Let L1, . . . , LK be independent and
identically distributed non-negative random variables, let C1, . . . , CK be non-negative constants such that C1 ≥ C2 ≥ · · · ≥ CK ,
and let a > 0 be some constant. Define, for k = 1, . . . , K,

Ek = E

⎡⎣Lk

⏐⏐⏐⏐ K∑
j=1

CjLj ≤ a

⎤⎦ (9)

Then, E1 ≤ E2 ≤ · · · ≤ EK .

The proof of Lemma 4.2 is provided in the Appendix; see Appendix A.2. We would like to thank an anonymous reviewer
for suggesting a way to prove this result.

Using Lemmas 4.1 and 4.2, we can derive the covariance structure of x̄T − x̄C under ridge rerandomization, as stated
by the following theorem.

Theorem 4.2 (Covariance Structure Under Ridge Rerandomization). Let λ ≥ 0 and aλ ≥ 0 be some prespecified constants. If
(x̄T − x̄C ) | x ∼ N (0,Σ) and NT = NC , then

Cov(x̄T − x̄C | x,Mλ ≤ aλ) = ΓDiag((λk dk,λ)1≤k≤K )Γ⊤ (10)

where Γ is the orthogonal matrix of eigenvectors of Σ corresponding to the ordered eigenvalues λ1 ≥ · · · ≥ λK > 0, and for
all k = 1, . . . , K ,

dk,λ = E

⎡⎣Z2
k

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎤⎦ (11)

with Z1, . . . , ZK
i.i.d.
∼ N(0, 1), where d1,λ ≤ d2,λ ≤ · · · ≤ dK ,λ.

The proof of Theorem 4.2 is in Appendix A.3. The quantities dk,λ are intractable functions of λ and aλ and thus need
to be approximated numerically, as explained in Section 4.2. Conditioning on Mλ ≤ aλ in (11) effectively constrains the
magnitude of the positive random variables Z2

k . Since the weights λk(λk + λ)−1 of their respective contributions to Mλ

are positive and non-increasing with k = 1, . . . , K , intuitively 0 < d1,λ ≤ · · · ≤ dK ,λ < 1, and this is established by
Lemma 4.2.

Using the above results, we can now compare randomization, rerandomization, and ridge rerandomization. Under the
assumptions stated in Theorem 4.2, the covariance matrices of x̄T − x̄C under randomization, rerandomization, and ridge
rerandomization can be respectively written as

Cov(x̄T − x̄C | x) = ΓDiag
(
(λk)1≤k≤K

)
Γ⊤, (12)

Cov(x̄T − x̄C | x,M ≤ a) = ΓDiag
(
(λk va)1≤k≤K

)
Γ⊤, (13)

Cov(x̄T − x̄C | x,Mλ ≤ aλ) = ΓDiag
(
(λk dk,λ)1≤k≤K

)
Γ⊤. (14)

where (13) follows from Theorem 3.1 in Morgan and Rubin (2012) with va ∈ (0, 1), and (14) follows from Theorem 4.2 with
dk,λ ∈ (0, 1) defined in (11). If we define new covariates x∗ as the principal components of the original ones, i.e., x∗

= xΓ,
then (13) and (14) respectively yield

Var
(
(x̄∗

T − x̄∗

C )k | x,M ≤ a
)

= va Var
(
(x̄∗

T − x̄∗

C )k | x
)

(15)

and

Var
(
(x̄∗

T − x̄∗

C )k | x,Mλ ≤ aλ

)
= dk,λ Var

(
(x̄∗

T − x̄∗

C )k | x
)

(16)
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for all k = 1, . . . , K , where (x̄∗

T − x̄∗

C )k is the kth principal component mean difference between the treatment and control
groups, i.e., the kth coefficient of Γ⊤(x̄T −x̄C ). From (15) we see that rerandomization reduces the variances of the principal
component mean differences equally by 100(1 − va)% and is thus EPVR for the principal components, as well as for
the original covariates, as discussed in Section 3. On the other hand, ridge rerandomization reduces these variances by
unequal amounts: the variance of the kth principal component mean difference is reduced by 100(1−dk,λ)%, and because
0 < d1,λ ≤ · · · ≤ dK ,λ < 1, ridge rerandomization places more importance on the first principal components.

Translating (16) back to the original covariates yields the following corollary, which establishes that ridge rerandom-
ization is always preferable over randomization in terms of reducing the variance of each covariate mean difference.

Corollary 4.1 (Variance Reduction for Ridge Rerandomization). Under the assumptions of Theorem 4.2, ridge rerandomization
reduces the variance of the kth covariate mean difference (x̄T − x̄C )k by 100

(
1 − vk,λ

)
%, where

vk,λ =

(
ΓDiag

(
(λj dj,λ)1≤j≤K

)
Γ⊤
)
kk

Σkk
(17)

satisfies vk,λ ∈ (0, 1), so that

Var ((x̄T − x̄C )k | x,Mλ ≤ aλ) < Var ((x̄T − x̄C )k | x) . (18)

The proof of Corollary 4.1 is provided in the Appendix; see Appendix A.4. Reducing the variance of the covariate mean
differences is beneficial for precisely estimating the average treatment effect if the outcomes are correlated with the
covariates. For example, Theorem 3.2 of Morgan and Rubin (2012) establishes that – under several assumptions, including
additivity of the treatment effect – rerandomization reduces the variance of τ̂ defined in (2) by 100(1 − va)R2 percent,
where R2 denotes the squared multiple correlation between the outcomes and the covariates. Now we establish how the
variance of τ̂ behaves under ridge rerandomization.

In the rest of this section, we assume—as in Morgan and Rubin (2012)—that the treatment effect is additive. Without
loss of generality, for all i = 1, . . . ,N , we can write the outcome of unit i as

Yi(Wi) = β0 + xi•β + τWi + ϵi (19)

where β0 + xβ is the projection of the potential outcomes Y(0) = (Y1(0) . . . YN (0))⊤ onto the linear space spanned by
(1, x), and ϵi ∈ R captures any misspecification of the linear relationship between the outcomes and x. Let ϵ̄T = N−1

T W⊤ϵ

and ϵ̄C = N−1
C (1N − W)⊤ϵ, where ϵ = (ϵ1 . . . ϵN )⊤.

Theorem 4.3 establishes that the variance of τ̂ under ridge rerandomization is always less than or equal to the variance
of τ̂ under randomization. Thus, ridge rerandomization always leads to a more precise treatment effect estimator than
randomization.

Theorem 4.3. Under the assumptions of Theorem 4.2, if (ϵ̄T − ϵ̄C ) is conditionally independent of (x̄T − x̄C ) given x, and if
there is an additive treatment effect, then

Var(τ̂ | x) − Var(τ̂ | x,Mλ ≤ aλ) = β⊤
ΓDiag

(
(λk

(
1 − dk,λ

)
)1≤k≤K

)
Γ⊤β

so that we have

Var(τ̂ | x,Mλ ≤ aλ) ≤ Var(τ̂ | x),

where the equality holds if and only if β = 0K in (19).

The proof of Theorem 4.3 is in the Appendix; see Appendix A.5. The conditional independence assumption was also
leveraged in the proof of Theorem 3.2 in Morgan and Rubin (2012). While this independence assumption may seem
strong, Li et al. (2018) showed that it is justified asymptotically, which allowed them to establish that rerandomization
is preferable over randomization even if treatment effects are not additive. Again, while the asymptotic properties of
ridge rerandomization are outside the scope of this work, we conjecture that Theorem 4.3 holds asymptotically even
without the conditional independence and additive treatment effects assumptions. Indeed, we find evidence via simulation
that ridge rerandomization is still preferable over randomization (and often rerandomization) when treatment effects are
heterogeneous, as discussed in Section 5.4.

The fact that ridge rerandomization performs better than randomization is arguably a low bar, because this is
the purpose of any rerandomization scheme. The following corollary quantifies how ridge rerandomization performs
compared to the rerandomization scheme of Morgan and Rubin (2012).

Corollary 4.2. Under the assumptions of Theorem 4.3, the difference in variances of τ̂ between rerandomization and ridge
rerandomization is

Var(τ̂ | x,M ≤ a) − Var(τ̂ | x,Mλ ≤ aλ) = β⊤
ΓDiag

(
(λk

(
va − dk,λ

)
)1≤k≤K

)
Γ⊤β.
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It is not necessarily the case that dk,λ ≤ va for all k = 1, . . . , K , and so it is not guaranteed that ridge rerandomization
will perform better or worse than rerandomization in terms of treatment effect estimation. Ultimately, the comparison of
rerandomization and ridge rerandomization depends on β, which is typically not known until after the experiment has
been conducted.

However, in Section 5.3, we provide some heuristic arguments for when ridge rerandomization would be prefer-
able over rerandomization, along with simulation evidence that confirms these heuristic arguments. In particular, we
demonstrate that ridge rerandomization is preferable over rerandomization when there are strong collinearities among
the covariates. We also discuss a ‘‘worst-case scenario’’ for ridge rerandomization, where β is specified such that ridge
rerandomization should perform worse than rerandomization in terms of treatment effect estimation accuracy.

In order to implement ridge rerandomization, researchers must specify the threshold aλ ≥ 0 and the regularization
parameter λ ≥ 0. The next section provides guidelines for choosing these parameters.

4.2. Guidelines for choosing aλ and λ

For ridge rerandomization, we recommend starting by specifying an acceptance probability pa ∈ (0, 1), which then
binds λ and aλ together via the identity (7). Once pa is fixed, there exists a uniquely determined threshold aλ ≥ 0 for
each λ ≥ 0 such that P(Mλ ≤ aλ | x) = pa. As in Morgan and Rubin (2012), acceptable treatment allocations under ridge
rerandomization are generated by randomizing units to treatment and control until Mλ ≤ aλ. Thus, a smaller pa leads to
stronger covariate balance according to Mλ at the expense of computation time.

The only choice that remains after fixing pa is the regularization parameter λ ≥ 0. The choice of λ is investigated in
Section 4.2.1. Once we fix pa and λ, we can set aλ equal to the pa-quantile of the quadratic form Qλ defined by

Qλ =

K∑
k=1

λk

λk + λ
Z2
k (20)

where Z1, . . . , ZK
i.i.d.
∼ N (0, 1). Such a choice of aλ is a good approximation of the pa-quantile of Mλ, especially when

N is large enough for (x̄T − x̄C ) | x to be approximately Normal, as motivated by Lemma 4.1. Computing the probability
density function (and quantile) of a weighted sum of independent χ2

1 random variables is a classical topic in computational
statistics (Imhof, 1961; Davies, 1980; Bausch, 2013), so the details of computing aλ are relegated to Appendix A.6.

Similarly, our choice of λ will depend on the dk,λ’s defined in (11), which involve intractable conditional expectations.
However, these dk,λ’s can be consistently estimated via Monte Carlo in a way that is computationally negligible, as
discussed in Appendix A.6. We denote the corresponding estimators as d̂k,λ. We can then estimate vk,λ from Corollary 4.1
consistently for all k = 1, . . . , K , by

v̂k,λ =

(
ΓDiag

(
(λj d̂j,λ)1≤j≤K

)
Γ⊤

)
kk

Σkk
(21)

which will be used to choose λ, as we discuss in the remainder of this section.

4.2.1. Choosing λ
In this section, assume that pa has been fixed. Note that choosing λ = 0 corresponds to rerandomization using

the Mahalanobis distance. Thus, we would only choose some λ > 0 if it is preferable over rerandomization, in the
following sense. There are many metrics that could be used for comparing rerandomization and ridge rerandomization;
for simplicity, we focus on the average percent reduction in variance across covariate mean differences. Arguably,
ridge rerandomization is preferable over rerandomization only if it is able to achieve a higher average reduction in
variance across covariate mean differences. Recall that, as discussed in Section 3, rerandomization reduces the variance
of each covariate mean difference by 100(1 − va)% compared to randomization, where va is defined in (5). Meanwhile,
as established by Corollary 4.1, ridge rerandomization reduces the variance of the kth covariate mean difference by
100(1− vk,λ)%, where vk,λ is defined in (17). Thus, the average variance reduction under ridge rerandomization is greater
than that under rerandomization only if

K−1
K∑

k=1

(1 − vk,λ) > 1 − va ↔ K−1
K∑

k=1

vk,λ < va (22)

Proving the existence of some λ > 0 such that (22) holds is challenging, so we propose the following iterative procedure
(see ‘‘Procedure for finding a desirable λ ≥ 0’’) for choosing such a λ > 0 if it exists. The technical details justifying this
procedure are in the Appendix; but at a high-level, our procedure uses the following intuition:

• Ridge rerandomization with λ > 0 is preferable over rerandomization (i.e., ridge rerandomization with λ = 0) only
if (22) holds.

• Thus, we will iteratively search for λ > 0 such that (22) holds.
• If we cannot find any λ > 0 such that (22) holds, then we set λ = 0. Otherwise, among all the λ’s satisfying (22),

we set λ such that the conditional covariance structure of (x̄T − x̄C ) is altered the least.
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We discuss why we choose a λ that alters the conditional covariance structure of (x̄T − x̄C ) the least in Section 4.3. In
the procedure below, we initialize λ = 0, and then we iteratively increase candidate λ’s by increments of δ, which is
specified by the user. As a rule-of-thumb, the step size δ can be chosen as a fraction of the smallest strictly positive gap
between consecutive eigenvalues, i.e., min{λk−λk−1 : k = 1, . . . , K such that λk > λk−1} with the convention λ0 = 0. The
stopping point of this iterative search is chosen dynamically in Step 3 of our procedure, and we discuss in Appendix A.7
why this dynamic search is guaranteed to stop in finite time. Finally, as we discuss further in Appendix A.7, the procedure
is computationally efficient in the sense that nK auxiliary Normal variables only need to be simulated once and can be
reused when testing different values of λ.

Procedure for finding a desirable λ ≥ 0

1. Specify pa ∈ (0, 1), n ≥ 1, δ > 0, and ε > 0.
2. Initialize λ = 0 and Λ = ∅.
3. While |(λ + δ)âλ+δ − λâλ|> ε:

• Set λ = λ + δ.

• If
1
K

K∑
k=1

v̂k,λ <
P(χ2

K+2 ≤ qχ2
K
(pa))

pa
, then set Λ = Λ ∪ {λ}.

4. If Λ = ∅, then return λ = 0.
Else, define ck = λ2

k (
∑K

j=1 λ2
j )

−1 for all k = 1, ..., K , and return:

λ⋆ = argmin
λ∈Λ

⎛⎝ K∑
k=1

ck d̂ 2
k,λ −

(
K∑

k=1

ck d̂k,λ

)2
⎞⎠ . (23)

In our procedure, Λ represents the set of λ such that (22) holds. When the set Λ is empty, we return λ = 0 (which
corresponds to typical rerandomization). However, the following heuristic argument illustrates why we would expect the
existence of at least one λ such that (22) holds. The rerandomization scheme of Morgan and Rubin (2012) spreads the
benefits of variance reduction across all K covariates equally; however, note that the term va = P(χ2

K+2 ≤ qχ2
K
(pa))/pa is

monotonically increasing in the number of covariates K for a fixed acceptance probability pa. Thus, the variance reduction
under rerandomization, 100(1−va)%, is monotonically decreasing in the number of covariates. A consequence of this is that
if one can instead determine a smaller set of Ke < K covariates that is most relevant, then that smaller set of covariates can
benefit from a greater variance reduction than what would be achieved by considering all K covariates. As we mentioned
at the end of Section 3, this idea was partially addressed in Morgan and Rubin (2015), which extended the rerandomization
scheme of Morgan and Rubin (2012) to allow for tiers of covariate importance specified by the researcher, such that the
most important covariates receive the most variance reduction. Ridge rerandomization, on the other hand, automatically
specifies a hierarchy of importance based on the eigenstructure of the covariate mean differences. To provide intuition for
this idea, consider a simple case where the smallest (K −Ke) eigenvalues λKe+1, . . . , λK are all arbitrarily close to 0. In this
case, we can find λ > 0 such that λj(λj + λ)−1

≈ 1 for the Ke largest eigenvalues and λj(λj + λ)−1
≈ 0 for the remaining

K −Ke eigenvalues, so that Mλ would be approximately distributed as χ2
ke with an effective number of degrees of freedom

Ke strictly less than K . For some fixed acceptance probability pa ∈ (0, 1) and corresponding thresholds ae = qχ2
Ke
(pa) and

a = qχ2
K
(pa), we would then have

vae =

P(χ2
Ke+2 ≤ qχ2

Ke
(pa))

pa
<

P(χ2
K+2 ≤ qχ2

K
(pa))

pa
= va (24)

since pa is fixed and Ke < K . The relative variance reduction for ridge rerandomization would then be (1−vae ) for the first
Ke principal components – which in this simple example make up the total variation in the covariate mean differences
– while the relative variance reduction for rerandomization would be (1 − va) < (1 − vae ) for the K covariates. Thus, in
this case, ridge rerandomization would achieve a greater variance reduction on a lower-dimensional representation of the
covariates than typical rerandomization.

This heuristic argument also hints that our method has connections to a principal-components rerandomization
scheme, where one instead balances on some lower dimension of principal components rather than on the covariates
themselves. We discuss this point further in Section 4.3.

4.3. Connections to other rerandomization schemes

Ridge rerandomization has connections to other rerandomization schemes. Ridge rerandomization requires specifying
the parameter λ; thus, consider two extreme choices of λ:
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Fig. 1. Distribution of (x̄T − x̄C ) | x under randomization, rerandomization (with pa = 0.1), ridge rerandomization (with pa = 0.1 and λ = 0.005),
and rerandomization using the Euclidean distance. Note the difference in scale for the randomization plot for ease of comparison.

1. λ = 0: Mλ = M , i.e., Mλ corresponds to the Mahalanobis distance.
2. λ → +∞: Mλ ≈ λ−1

∥x̄T − x̄C∥2, i.e., Mλ tends to a scaled Euclidean distance.

In other words, ridge rerandomization with λ = 0 is equivalent to rerandomization using the Mahalanobis distance; and
for large λ, rerandomization using λMλ is equivalent to rerandomization using the Euclidean distance. Note, however, that
the threshold aλ will already take the λ−1 factor into account when computing the quantile of Mλ, meaning that ridge
rerandomization using Mλ for large λ is essentially equivalent to rerandomization using the Euclidean distance.

Thus, for any finite λ > 0, the distance defined by Mλ can be regarded as a compromise between the Mahalanobis and
Euclidean distances. Rerandomization using the Euclidean distance is similar to a rerandomization scheme that places a
separate caliper on each covariate, which was proposed by Moulton (2004), Maclure et al. (2006), Bruhn and McKenzie
(2009), and Cox (2009). However, Morgan and Rubin (2012) note that such a rerandomization scheme is not affinely
invariant and does not preserve the correlation structure of (x̄T − x̄C ) across acceptable randomizations. See Morgan
and Rubin (2012) for a full discussion of the benefits of using affinely invariant rerandomization criteria. As discussed in
Section 4.2.1, our proposed procedure aims for larger variance reductions of covariate mean differences while mitigating
the perturbation of the correlation structure of (x̄T − x̄C ).

As an illustration, consider a randomized experiment where NT = NC = 50 units are assigned to treatment and
control; and furthermore, where there are two correlated covariates, generated as x1j

i.i.d.
∼ N(0, 1) and x2j

i.i.d.
∼ N(x1i, 1) for

j = 1, . . . ,N . Fig. 1 shows the distribution of (x̄T − x̄C ) | x across 1000 randomizations, rerandomizations (with pa = 0.1),
ridge rerandomizations (with pa = 0.1 and λ = 0.005), and rerandomizations using the Euclidean distance instead of the
Mahalanobis distance.

All three rerandomization schemes reduce the variance of (x̄T − x̄C )k | x for k ∈ {1, 2}, compared to randomization;
however, rerandomization using the Euclidean distance destroys the correlation structure of (x̄T − x̄C ) | x, while
rerandomization and ridge rerandomization largely maintain it. This provides further motivation for Step 4 of the
procedure presented in Section 4.2.1.
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Furthermore, as discussed in Sections 4.1 and 4.2.1, ridge rerandomization can be regarded as a ‘‘soft-thresholding"
version of a rerandomization scheme that would focus solely on the first Ke < K principal components of (x̄T − x̄C ). A
‘‘hard-thresholding" rerandomization scheme would use a truncated version MKe of the Mahalanobis distance, defined as

MKe = (x̄T − x̄C )⊤Σ̂
−1
Ke (x̄T − x̄C )

with

ΣKe = ΓDiag
(
(λ1, . . . , λKe , 0, . . . , 0)

)
Γ⊤

i.e., ΣKe artificially sets the smallest (K − Ke) eigenvalues of Σ to 0. This scheme would then be EPVR for the first Ke
principal components of (x̄T − x̄C ) – although not necessarily EPVR for the original covariates themselves – but would
effectively ignore the components associated with the smallest (K − Ke) eigenvalues of Σ.

Therefore, ridge rerandomization is a flexible experimental design strategy that encapsulates a class of rerandomization
schemes, thus making it worth further investigation in future work. We expand on this point in Section 6.

4.4. Conducting inference after ridge rerandomization

Here we outline how to conduct inference for the average treatment effect after ridge rerandomization has been used
to conduct an experiment. In general, there are Neymanian, Bayesian, and randomization-based modes of inference for
analyzing randomized experiments (Imbens and Rubin, 2015). The Neymanian mode of inference relies on asymptotic
approximations for the variance of the mean-difference estimator τ̂ ; such results are well-established for completely
randomized experiments (Neyman et al., 1990), paired experiments (Imai, 2008), blocked experiments (Miratrix et al.,
2013; Pashley and Miratrix, 2017), and randomized experiments with stages of random sampling (Branson and Dasgupta,
2020). In a seminal paper, Li et al. (2018) derived many asymptotic results for rerandomized experiments (as discussed
in Morgan and Rubin (2012)), thereby establishing Neymanian inference for such experiments. The results therein rely on
various properties of the Mahalanobis distance, which – as established by our results – differ from the properties of the
ridge Mahalanobis distance. As a consequence, the theory developed in Li et al. (2018) cannot be readily applied to ridge
rerandomized experiments, and a promising line of future work is deriving asymptotic results for ridge rerandomized
experiments. Asymptotic results could also be used to establish Bayesian inference for such experiments, which would be
particularly useful given that one’s preference for rerandomization or ridge rerandomization may depend on their prior
knowledge of β, as suggested by Corollary 4.2. Addressing these complications is beyond the scope of this paper. Instead,
we focus on randomization-based inference, because it can be readily applied to ridge rerandomization.

Randomization-based inference focuses on inverting sharp null hypotheses that define the relationship between the
potential outcomes in terms of treatment effects. The most common null hypothesis is that of an additive treatment effect
τ , such that the hypothesis Hτ

0 : Yi(1) = Yi(0) + τ holds for all i = 1, . . . ,N . Confidence intervals derived from inverting
this hypothesis were first established by Hodges Jr and Lehmann (1963) and have since been popularized for analyzing
randomized experiments (e.g., see Rosenbaum, 2002; Imbens and Rubin, 2015). Here we briefly review how to obtain
randomization-based confidence intervals for completely randomized experiments, and then we extend them to ridge
rerandomized experiments.

As first proposed by Hodges Jr and Lehmann (1963), a valid randomization-based confidence interval is the set of τ
such that we fail to reject Hτ

0 ; such inversion of a hypothesis is a classical way to obtain a confidence set (Kempthorne
and Doerfler, 1969). To obtain a valid p-value for Hτ

0 , a key insight is that, if Hτ
0 holds, then one has full knowledge of the

potential outcomes for all units: If we observe the outcome under control for a particular unit, we know that the outcome
under treatment for that unit is simply the observed outcome plus τ . As a result, for any hypothetical randomization, a test
statistic – such as the mean difference estimator, τ̂ – can be computed. To obtain a p-value for Hτ

0 under randomization,
one follows this simple three-step procedure:

1. Generate many hypothetical randomizations, w(1), . . . ,w(M), by permuting the observed treatment indicator.
2. Compute a test statistic t(w, x, y), such as the mean-difference estimator, across the randomizations w(1), . . . ,w(M)

assuming Hτ
0 is true.

3. Compute the randomization-based p-value, defined as

p =
1 +

∑M
m=1 1

(
|t(w(m), x, y)| > |tobs|

)
M + 1

(25)

where tobs is the observed test statistic and 1(·) denotes the indicator function. The additional 1 in the numerator and
the denominator induces a very small amount of bias in order to validly control the Type 1 error rate and is a standard
correction for randomization test p-values (Phipson and Smyth, 2010). Modern statistical software allows one to readily
invert Hτ

0 after Step 1 is completed (in Section 5, we will use the R package ri (Aronow and Samii, 2012) to do this),
thereby producing randomization-based confidence intervals. This makes the extension to ridge rerandomization quite
straightforward: In Step 1, one generates many hypothetical ridge rerandomizations (instead of randomizations), and then
proceeds as usual to conduct randomization-based inference. This is identical to the approach discussed in Morgan and
Rubin (2012) for obtaining confidence intervals under rerandomization, except using hypothetical ridge rerandomizations
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instead of hypothetical rerandomizations. This can also be viewed as inverting a conditional randomization test, where we
condition on the fact that the ridge rerandomization balance criterion has been fulfilled (Hennessy et al., 2016; Branson
and Miratrix, 2019). As we shall see in Section 5, confidence intervals for ridge rerandomized experiments are much more
precise than intervals for completely randomized experiments, and often more precise than intervals for rerandomized
experiments, especially in high dimensional and/or collinearity settings.

5. Simulations

We now provide simulation evidence that supports the heuristic argument presented in Section 4.2 and suggests when
ridge rerandomization is an effective experimental design strategy. First, we will consider conducting an experiment
where covariates are linearly related with the outcome, treatment effects are additive, and the number of treated units
and the number of control units are equal. Then we will consider alternative scenarios. Throughout, we will compare
rerandomization and ridge rerandomization in terms of (1) their ability to balance covariates, (2) their ability to produce
precise treatment effect estimators, and (3) their ability to produce precise confidence intervals. We find that ridge
rerandomization is particularly preferable over rerandomization in high-dimensional or high-collinearity settings.

5.1. Simulation setup

Consider N = 100 units, 50 of which are to be assigned to treatment and 50 are to be assigned to control. Let x be a
N × K covariate matrix, generated as

x ∼ N

⎛⎜⎜⎝
⎛⎜⎝0

...

0

⎞⎟⎠ ,

⎛⎜⎜⎝
1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⎞⎟⎟⎠
⎞⎟⎟⎠ (26)

where 0 ≤ ρ < 1. The parameter ρ corresponds to the correlation among the covariates. Furthermore, let Yi(1) and Yi(0)
be the potential outcomes under treatment and control, respectively, for unit i, generated as

Yi(0) ∼ N (xβ, 1)
Yi(1) = Yi(0) + τ

(27)

For this simulation study, we set the treatment effect to be τ = 1. Across simulations, we consider number of covariates
K ∈ {10, . . . , 90} and correlation parameter ρ ∈ {0, 0.1, . . . , 0.9}. We discuss choices for β in Section 5.3. In Section 5.4,
we discuss scenarios where covariates are nonlinearly related with the outcomes, treatment effects are non-additive, and
NT ̸= NC ; however, the results for these other scenarios are largely the same as those for the above data-generating
process, and so for ease of exposition we focus on results for the case where the covariates are generated from (26) and
the potential outcomes are generated from (27).

We will consider three experimental design strategies for assigning units to treatment and control:

1. Randomization: Randomize 50 units to treatment and 50 to control.
2. Rerandomization: Randomize 50 units to treatment and 50 to control until M ≤ a, where M is the Mahalanobis

distance defined in (3).
3. Ridge Rerandomization: Randomize 50 units to treatment and 50 to control until Mλ ≤ aλ, where Mλ is the ridge

Mahalanobis distance defined in (6).

For each choice of K , ρ, and β, we ran randomization, rerandomization, and ridge rerandomization 1000 times. For
rerandomization and ridge rerandomization, we set pa = 0.1, which corresponds to randomizing within the 10% ‘‘best’’
randomizations according to the Mahalanobis distance and ridge Mahalanobis distance, respectively. Furthermore, for
ridge rerandomization, we used the procedure in Section 4.2.1 for selecting λ, with n = 1000, δ = 0.01, and ϵ = 10−4.
The value λ = 0.01 was selected for most K and ρ, and occasionally λ = 0.02 was selected.

First, in Section 5.2, we compare how these three methods balanced the covariates x, and so the β parameter in (27)
is irrelevant for this section. Then, in Section 5.3, we compare the accuracy of treatment effect estimators and precision
of confidence intervals for each method; in this case, the specification of β is consequential.

5.2. Comparing covariate balance across randomizations

First, we computed the covariate mean differences across each randomization, rerandomization, and ridge rerandom-
ization. Fig. 2 shows how much rerandomization and ridge rerandomization reduced the variance of x̄T − x̄C (averaged
across covariates) compared to randomization for data generated from (26). For rerandomization, the average variance
reduction decreases as K increases (an observation previously made in Morgan and Rubin, 2012), and it stays largely the
same across values of ρ for fixed K . As for ridge rerandomization, the average variance reduction also decreases as K
increases, but the average variance reduction increases as ρ increases, i.e., as there is more collinearity in x. Finally, the
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Fig. 2. Variance reduction averaged across covariates for rerandomization and ridge rerandomization, as well as their difference (ridge
rerandomization minus rerandomization, i.e., the second plot minus the first).

right-hand plot in Fig. 2 shows that ridge rerandomization has a higher average variance reduction than rerandomization;
furthermore, the advantage of ridge rerandomization over rerandomization increases in both K and ρ. This suggests that
ridge rerandomization may be particularly preferable over rerandomization in the presence of many covariates and/or
high collinearity among covariates, which is intuitive given the motivation of ridge regression (Hoerl and Kennard, 1970).

5.3. Comparing treatment effect estimation accuracy across randomizations

Reducing the variance of each covariate mean difference leads to more precise treatment effect estimates if the
covariates are related to the outcome, as in (27). The extent to which the covariates are related to the outcome
depends on the β parameter. Theorem 4.3 guarantees that ridge rerandomization will improve inference for the average
treatment effect, compared to randomization, regardless of β. However, Corollary 4.2 establishes that β dictates whether
rerandomization or ridge rerandomization will perform better in terms of treatment effect estimation accuracy. First we
will consider a β where the covariates are equally related to the outcome, and in this case ridge rerandomization performs
better than rerandomization. Then, we will consider a β which – according to our theoretical results – should put ridge
rerandomization in the worst light as compared to rerandomization.

5.3.1. One choice of β
Consider β = 1K . Because the covariates have been standardized to have the same scale, such a β implies that all of

the covariates are equally important in affecting the outcome. For each of the 1000 randomizations, rerandomizations,
and ridge rerandomizations generated for each K ∈ {10, . . . , 90} and ρ ∈ {0, 0.1, . . . , 0.9}, we computed the mean-
difference estimator τ̂ . Then, we computed the MSE of τ̂ across the 1000 randomizations, rerandomizations, and ridge
rerandomizations for each K and ρ. Fig. 3 shows the MSE of rerandomization and ridge rerandomization relative to the
MSE of randomization. A lower relative MSE represents a more accurate treatment effect estimator, compared to how
that estimator would behave under randomization.

Three observations can be made about Fig. 3. First, both rerandomization and ridge rerandomization reduce the MSE
of τ̂ compared to randomization: the relative MSE for both methods is always less than 1. Second, for rerandomization,
the relative MSE stays constant across values of ρ and decreases as K decreases. Meanwhile, for ridge rerandomization,
the relative MSE decreases as ρ increases and K decreases. Third, for this choice of β, ridge rerandomization reduces the
MSE of the treatment effect estimator more so than rerandomization, especially when K and/or ρ is large. These last two
observations reflect the variance reduction behavior observed in Fig. 2.

Meanwhile, for each randomization, rerandomization, and ridge rerandomization, we generated a 95% confidence
interval for the average treatment effect using the procedure outlined in Section 4.4. Regardless of the procedure used,
coverage was near 95%. This is unsurprising, because these intervals were constructed by inverting randomization tests
that are valid for their corresponding assignment mechanism; see Edgington and Onghena (2007) and Good (2013)
for classical results on the validity of randomization tests. However, the width of these intervals differed across these
three procedures: Fig. 4 compares the relative average interval width (compared to randomization) for rerandomization
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Fig. 3. Relative MSE of τ̂ = ȳT − ȳC under rerandomization and ridge rerandomization (relative to randomization) when β = 1K in (27), as well as
the difference in relative MSE between the two (i.e., the second plot minus the first).

Fig. 4. Relative average 95% confidence interval width under rerandomization and ridge rerandomization (relative to randomization) when β = 1K
in (27), as well as the difference between the two (i.e., the second plot minus the first).

and ridge rerandomization. For the first two plots in Fig. 4, a number closer to 1 indicates intervals that are closer in
width to intervals under randomization. Meanwhile, for the right-most plot in Fig. 4, a more negative number indicates
more narrow confidence intervals for ridge rerandomization, as compared to rerandomization. The qualitative results are
identical to the previous results: Ridge rerandomization tends to provide narrower confidence intervals as the covariates’
dimension and/or collinearity increases.

5.3.2. A choice of β where ridge rerandomization has the least competitive advantage over rerandomization
As can be seen by Corollary 4.2, there may exist β where rerandomization performs better than ridge rerandomization.

To assess how poorly ridge rerandomization can perform compared to rerandomization, now we will specify a β that puts
ridge rerandomization in the worst light when comparing it to rerandomization in terms of treatment effect estimation
accuracy.

Under the assumptions of Corollary 4.2, the difference in treatment effect estimation accuracy between rerandomiza-
tion and ridge rerandomization is given by ∆ = β⊤

ΓDiag
(
(λk

(
va − dk,λ

)
)1≤k≤K

)
Γ⊤β, which can be artificially minimized
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Fig. 5. Relative MSE of τ̂ = ȳT − ȳC under rerandomization and ridge rerandomization (relative to randomization) for the β such that ridge
rerandomization has the least competitive advantage over rerandomization, as well as the difference in relative MSE between the two (i.e., the
second plot minus the first).

with respect to β, subject to some constraint on β for the minimum to exist, e.g., ∥β∥ ≤ 1. If dk,λ < va for all k = 1, . . . , K ,
then ridge rerandomization dominates rerandomization since ∆ > 0 for all β ̸= 0, and these schemes are only tied when
∆ = 0 for β = 0, i.e., the covariates are uncorrelated with the outcomes. In other cases, we can define β∗

= Γ•k∗ where
Γ•k∗ is the k∗-th column of Γ and k∗

= argmin1≤k≤K (va − dk,λ). We would typically have k∗
= K , because the dk,λ’s are

non-increasing. By construction, β∗ minimizes ∆ over {β ∈ RK
: ∥β∥ ≤ 1} and yields ∆ < 0 as negative as possible.

This is equivalent to β being in the direction that accounts for the least variation in the covariates. While such a case is
unlikely, we consider such a β to see how much worse ridge rerandomization performs as compared to rerandomization
in this scenario.

Fig. 5 shows the relative MSE (as compared to randomization) for rerandomization and ridge rerandomization for this
specification of β. Interestingly, there are occasions where rerandomization and ridge rerandomization have relative MSEs
greater than 1, i.e., when they perform worse than randomization in terms of treatment effect estimation accuracy. At first
this may be surprising, especially when findings from Morgan and Rubin (2012) guarantee that rerandomization should
perform better than randomization. However, in this case, β is in the direction of the last principal component of the
covariate space, meaning that the covariates have nearly no relationship with the outcomes. Thus, the relative MSE that
we see in the first two plots of Fig. 5 is more or less the behavior we would expect if we compared 1000 randomizations
to 1000 other randomizations. Furthermore, from the third plot in Fig. 5, we can see that rerandomization occasionally
performs better than ridge rerandomization – particularly when K is small – but the differences in relative MSE across
simulations are somewhat centered around zero. Meanwhile, Fig. 6 compares the relative average confidence interval
width for rerandomization and ridge rerandomization, and the qualitative results are largely the same as the relative MSE
results: Rerandomization and ridge rerandomization are fairly comparable, but rerandomization tends to provide slightly
narrower confidence intervals for low-dimensional covariates.

Note that this specification of β is a unit vector. We could have scaled β arbitrarily large, and, as a result, the
differences in the last plots of Figs. 5 and 6 could have been made arbitrarily large. Thus, ridge rerandomization can
perform much worse than rerandomization when β exhibits particularly large effects in the direction of the last principal
component of the covariate space, especially when the number of covariates is small. Practically speaking, such a scenario
is unlikely, but it is a scenario that researchers should acknowledge and consider when comparing rerandomization and
ridge rerandomization.

5.4. Additional simulations: Unequal sample sizes, nonlinearity, heterogeneous treatment effects, and rank deficiency

In the above, we considered scenarios where an equal number of units are assigned to treatment and control, covariates
are linearly related with the potential outcomes, and treatment effects are additive. In Appendix A.8, we present simulation
results for scenarios where NT ̸= NC , covariates are nonlinearly related with the potential outcomes, and treatment effects
are heterogeneous. The results presented therein are very similar to the results presented above: Rerandomization and
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Fig. 6. Relative average 95% confidence interval width under rerandomization and ridge rerandomization (relative to randomization) for the β such
that ridge rerandomization has the least competitive advantage over rerandomization, as well as the difference between the two (i.e., the second
plot minus the first).

ridge rerandomization are still preferable over randomization, and ridge rerandomization is preferable over rerandom-
ization in high-dimensional and/or high-collinearity scenarios. We found that ridge rerandomization’s advantage over
rerandomization was somewhat diminished when treatment and control sample sizes were highly unequal or when
covariates were nonlinearly related with the potential outcomes, but the advantage in high-dimensional and/or high-
collinearity scenarios was still clear. Due to the similarity of these results, we relegated these additional simulations to
the Appendix.

Finally, note that all of our previous simulation studies focused on the case where N = 100 and K ∈ {10, 20, . . . , 90}. In
this case, the covariance matrix Σ is always invertible, which we have assumed throughout the manuscript. When N ≤ K ,
Σ is not invertible, the Mahalanobis distance is undefined, and rerandomization cannot be implemented. However, the
ridge Mahalanobis distance Mλ in (6) is still defined, and ridge rerandomization can still be implemented. In Appendix A.8,
we present simulation results when N = 100 and K = 101, and we again find that ridge rerandomization is preferable
over randomization, especially in high-collinearity scenarios. This suggests that ridge rerandomization may be a viable
experimental design strategy when N ≤ K , and interesting future work would be establishing theoretical results for ridge
rerandomization even when Σ is not invertible but the ridge Mahalanobis distance is still defined.

5.5. Summary of simulation results

Importantly, the effectiveness of rerandomization or ridge rerandomization in balancing the covariates does not depend
on the covariates’ relationship with the outcomes. In other words, the variance reduction results in Fig. 2 do not depend
on β, whereas the treatment effect estimation accuracy results in Figs. 3 and 5 and confidence interval results in Figs. 4
and 6 do. From Fig. 2 we see that ridge rerandomization appears to generally be more effective than rerandomization
in balancing covariates in high-dimensional or high-collinearity settings, and from Figs. 3 and Fig. 4 we see that this can
result in more precise treatment effect estimators and confidence intervals. These results also hold when treatment and
control sample sizes are unequal, the outcome is nonlinearly related with the covariates, or when there is treatment effect
heterogeneity, as discussed briefly in Section 5.4 and more fully in Appendix A.8. However, from Section 5.3.2, we see
that there are cases where rerandomization can perform better than ridge rerandomization in terms of treatment effect
estimation. In particular, if the relationship between the covariates and the outcome is strongly in the direction of the last
principal component of the covariate space, rerandomization can perform arbitrarily better than ridge rerandomization,
especially when there are only a few number of covariates. In general, the comparison between rerandomization and ridge
rerandomization depends on the relationship between the covariates and the outcomes, which is typically not known until
after the experiment is conducted.

In summary, these simulations suggest that ridge rerandomization is often preferable over rerandomization by
targeting the directions that best explain variation in the covariates rather than the covariates themselves. If the covariates
are related to the outcomes (linearly or nonlinearly), ridge rerandomization appears to be an appealing experimental
design strategy when there are many covariates and/or highly collinear covariates.

6. Discussion and conclusion

The rerandomization literature has focused on experimental design strategies that utilize the Mahalanobis distance.
Starting with Morgan and Rubin (2012) and continuing with works such as Morgan and Rubin (2015), Branson et al. (2016),
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Zhou et al. (2018), and Li et al. (2018), many theoretical results have been established for rerandomization schemes using
the Mahalanobis distance. However, the Mahalanobis distance is known to not perform well in high dimensions or when
there are strong collinearities among covariates—settings which the current rerandomization literature has not addressed.

To address experimental design settings where there are many covariates or strong collinearities among covariates, we
presented a rerandomization scheme that utilizes a modified Mahalanobis distance. This modified Mahalanobis distance
inflates the eigenvalues of the covariance matrix of the covariates, thereby increasing the variance reduction of the
covariates’ first principal components at the expense of decreasing the variance reduction of the last principal components.
Such a quantity has remained largely unexplored in the literature. We established several theoretical properties of this
modified Mahalanobis distance, as well as properties of a rerandomization scheme that uses it—an experimental design
strategy we call ridge rerandomization. These results establish that ridge rerandomization preserves the unbiasedness
of treatment effect estimators and reduces the variance of covariate mean differences. If the covariates are related
to the outcomes of the experiment, ridge rerandomization will yield more precise treatment effect estimators than
randomization. Furthermore, we conducted a simulation study that suggests that ridge rerandomization is often preferable
over rerandomization in high-dimensional or high-collinearity scenarios, which is intuitive given ridge rerandomization’s
connections to ridge regression.

This modified Mahalanobis distance represents a class of rerandomization criteria, which has connections to principal
components and the Euclidean distance. This motivates future work for rerandomization schemes that utilize other
criteria. In particular, our theoretical results establish that the benefit of our class of rerandomization schemes over
typical rerandomization depends on the covariates’ relationship with the outcomes, which usually is not known until
after the experiment has been conducted. However, if researchers have prior information about the relationship between
the covariates and the outcomes, this information may be useful in selecting rerandomization criteria. An interesting line
of future work is further exploring other classes of rerandomization criteria, as well as demonstrating how prior outcome
information can be used to select useful rerandomization criteria when designing an experiment.
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Appendix A

A.1. Proof of Lemma 4.1

Since Σ > 0, it is invertible and we can write

(Σ + λ IK )−1
= Σ−

1
2 (IK + λ Σ−1)−1Σ−

1
2

so that

Mλ = Z̃⊤(IK + λ Σ−1)−1̃Z

where Z̃ = Σ−
1
2 (x̄T − x̄C ). Thanks to the assumed Normality of Z̃ | x ∼ N (0, IK ), we may write

Mλ | x ∼ Z⊤(IK + λ Σ−1)−1Z

where Z = (Z1 . . . ZK )⊤ ∼ N (0, 1K ) marginally and independently of x. The matrix (IK + λ Σ−1)−1 shares the same
orthonormal basis x of eigenvectors Γ as Σ, with corresponding eigenvalues λ1(λ1 + λ)−1, . . . , λK (λK + λ)−1. As a
consequence, we have

Mλ | x ∼ (Γ⊤Z)⊤ Diag

((
λj

λj + λ

)
1≤j≤K

)
(Γ⊤Z) (28)

Since (Γ⊤Z) ∼ N (0,Γ⊤Γ) ∼ N (0, IK ) ∼ Z by orthogonality of Γ, we get

Mλ | x ∼ Z⊤ Diag

((
λj

λj + λ

)
1≤j≤K

)
Z =

K∑
j=1

λj

λj + λ
Z2
j

where Z1, . . . , ZK
i.i.d.
∼ N (0, 1) and λ1 ≥ · · · ≥ λK > 0 are the eigenvalues of Σ. □
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A.2. Proof of Lemma 4.2

Without loss of generality, let K = 2. Thus, the aim of this proof is to establish that E1 ≤ E2, i.e.,

E
[
L1

⏐⏐⏐⏐C1L1 + C2L2 ≤ a
]

≤ E
[
L2

⏐⏐⏐⏐C1L1 + C2L2 ≤ a
]

(29)

where L1 and L2 are independent and identically distributed non-negative random variables, C1 ≥ C2 ≥ 0 are constants,
and a > 0 is a constant.

First, it will be helpful to note that the event C1L1 + C2L2 ≤ a can be partitioned into two events:

A = {C1L1 + C2L2 ≤ a, C1L2 + C2L1 ≤ a}
B = {C1L1 + C2L2 ≤ a, C1L2 + C2L1 > a}

In other words, A ∪ B is equal to the event C1L1 + C2L2 ≤ a. Thus,

E
[
L1

⏐⏐⏐⏐C1L1 + C2L2 ≤ a
]

= E[L1|A]P(A) + E[L1|B]P(B) (30)

and analogously for L2.
Now note that if C1L1 + C2L2 ≤ a and L1 ≥ L2, then C1L2 + C2L1 ≤ a and thus B cannot occur. To see this, note that if

L1 ≥ L2, then C2(L1 − L2) − C1(L1 − L2) ≤ 0, because C1 ≥ C2 ≥ 0, and therefore:

C1L2 + C2L1 = C1L1 + C2L2 + C2(L1 − L2) − C1(L1 − L2)
≤ C1L1 + C2L2
≤ a

In other words, B will only occur if L1 < L2, and therefore E[L1|B] < E[L2|B].
Meanwhile, due to the symmetry of L1 and L2 in the two constraints in A, E[L1|A] = E[L2|A]. Thus, revisiting (30), we

have the following:

E
[
L1

⏐⏐⏐⏐C1L1 + C2L2 ≤ a
]

= E[L1|A]P(A) + E[L1|B]P(B)

= E[L2|A]P(A) + E[L1|B]P(B)
≤ E[L2|A]P(A) + E[L2|B]P(B)

= E
[
L2

⏐⏐⏐⏐C1L1 + C2L2 ≤ a
]

which completes the proof. For K > 2, the same application of the proof applies, with the only difference being partitioning
the event

∑K
j=1 CjLj ≤ a into 2(K ! − 1) events. □

A.3. Proof of Theorem 4.2

Using the same notation and reasoning as for the proof of Lemma 4.1 in Appendix A.1, in particular (28), we can write

Cov(x̄T − x̄C | x,Mλ ≤ aλ)

= Cov

⎛⎝Σ1/2Z

⏐⏐⏐⏐⏐⏐ x,
K∑

j=1

λj

λj + λ
(Γ⊤Z)2j ≤ aλ

⎞⎠
= Cov

⎛⎝ΓDiag
(√

λ1:K

)
(Γ⊤Z)

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
(Γ⊤Z)2j ≤ aλ

⎞⎠ (31)

= ΓDiag
(√

λ1:K

)
Cov

⎛⎝(Γ⊤Z)

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
(Γ⊤Z)2j ≤ aλ

⎞⎠Diag
(√

λ1:K

)
Γ⊤

= ΓDiag
(√

λ1:K

)
Cov

⎛⎝Z

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎞⎠Diag
(√

λ1:K

)
Γ⊤ (32)

where (31) follows from the definition of Σ1/2
= ΓDiag

(√
λ1:K

)
Γ⊤ along with the constructed independence of Z and x

to get rid of the conditioning on x, and (32) follows from (Γ⊤Z) ∼ Z by orthogonality of Γ and standard Normality of Z.
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All that is left now is to compute the conditional covariance matrix appearing in (32). Starting by its diagonal elements,
the symmetry of the Normal distribution ensures that Z ∼ −Z, which implies

E

⎡⎣Zk

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎤⎦ = E

⎡⎣−Zk

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
(−Zj)2 ≤ aλ

⎤⎦
= −E

⎡⎣Zk

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
(Zj)2 ≤ aλ

⎤⎦
for all k = 1, . . . , K , so that

E

⎡⎣Zk

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎤⎦ = 0

Thus, the diagonal elements dk,λ of Cov
(
Z
⏐⏐⏐∑K

j=1
λj

λj+λ
Z2
j ≤ aλ

)
are given by

dk,λ = Var

⎛⎝Z2
k

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎞⎠ = E

⎡⎣Z2
k

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎤⎦ (33)

for all k = 1, . . . , K . Now for the (ℓ,m)-element of Cov
(
Z
⏐⏐⏐∑K

j=1
λj

λj+λ
Z2
j ≤ aλ

)
with ℓ ̸= m, we use again the symmetry

of the Normal distribution by noticing that Z ∼ Z∗, where we define Z∗

i = Zi for all i ̸= ℓ and Z∗

ℓ = −Zℓ, so that

Cov

⎛⎝Zℓ, Zm

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎞⎠ = Cov

⎛⎝Z∗

ℓ , Z∗

m

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
(Z∗

j )
2

≤ aλ

⎞⎠
= − Cov

⎛⎝Zℓ, Zm

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎞⎠
which leads to

Cov

⎛⎝Zℓ, Zm

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎞⎠ = 0 (34)

for all 1 ≤ ℓ,m ≤ K such that ℓ ̸= m. Combining (33) and (34) gives

Cov

⎛⎝Z

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎞⎠ = Diag
((

dk,λ
)
1≤k≤K

)
(35)

Plugging (35) back into (32) finally yields

Cov(x̄T − x̄C | x,Mλ ≤ aλ) = ΓDiag((λk dk,λ)1≤k≤K )Γ⊤.

where the dk,λ’s are given by (33). From the expression of dk,λ, we immediately have dk,λ > 0 for all k = 1, . . . , K . By
using Equation (13) from Palombi and Toti (2013), we also get

E

⎡⎣Z2
k

⏐⏐⏐⏐⏐⏐
K∑

j=1

λj

λj + λ
Z2
j ≤ aλ

⎤⎦ < E
[
Z2
k

]
= 1

for all k = 1, . . . , K . Therefore, we have dk,λ ∈ (0, 1) for all k = 1, . . . , K . □

A.4. Proof of Corollary 4.1

By definition of vk,λ and by Theorem 4.2, we have

vk,λ =
Var ((x̄T − x̄C )k | x,Mλ ≤ aλ)

Var ((x̄T − x̄C )k | x)
=

Cov(x̄T − x̄C | x,Mλ ≤ aλ)kk
Cov(x̄T − x̄C | x)kk

=

(
ΓDiag

(
(λj dj,λ)1≤j≤K

)
Γ⊤
)
kk

Σkk
.
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Since λj(1 − dj,λ) > 0 for all j = 1, . . . , K , the matrix

Σ − ΓDiag
(
(λj dj,λ)1≤j≤K

)
Γ⊤

= ΓDiag
(
(λj (1 − dj,λ))1≤j≤K

)
Γ⊤

is positive definite. This implies that

v⊤
(
Σ − ΓDiag

(
(λj dj,λ)1≤j≤K

)
Γ⊤
)
v > 0 (36)

for all v ∈ RK
\{0}. In particular, by using (36) with v chosen to be the kth canonical basis vector of RK (whose elements

are all 0 except its kth element equal to 1), we get, for all k = 1, . . . , K ,

Σkk >
(
ΓDiag

(
(λj dj,λ)1≤j≤K

)
Γ⊤
)
kk . (37)

These terms being strictly positive, this leads to vk,λ ∈ (0, 1) for all j = 1, . . . , K , i.e.

Var ((x̄T − x̄C )k | x,Mλ ≤ aλ) < Var ((x̄T − x̄C )k | x) □

A.5. Proof of Theorem 4.3

By using (19), we can write

τ̂ = (ȳT − ȳC ) = τ + β⊤(x̄T − x̄C ) + (ϵ̄T − ϵ̄C ) (38)

By conditional independence of (ϵ̄T − ϵ̄C ) and (x̄T − x̄C ) given x, we have

Var(τ̂ | x) = Var(β⊤(x̄T − x̄C ) | x) + Var(ϵ̄T − ϵ̄C | x)

= β⊤
Σβ + Var(ϵ̄T − ϵ̄C | x) (39)

Conditional on x, Mλ is a deterministic function of (x̄T − x̄C ), thus (ϵ̄T − ϵ̄C ) is conditionally independent of Mλ given x.
This leads to

Var(τ̂ | x,Mλ ≤ aλ) = Var(β⊤(x̄T − x̄C ) | x,Mλ ≤ aλ) + Var(ϵ̄T − ϵ̄C | x,Mλ ≤ aλ)

= β⊤Cov(x̄T − x̄C | x,Mλ ≤ aλ)β + Var(ϵ̄T − ϵ̄C | x) (40)

= β⊤
ΓDiag

(
(λkdk,λ)1≤k≤K

)
Γ⊤β + Var(ϵ̄T − ϵ̄C | x) (41)

where (40) follows from the conditional independence of (ϵ̄T − ϵ̄C ) and Mλ given x, and (41) follows from Theorem 4.2.
By plugging (39) into (41), we get

Var(τ̂ | x) − Var(τ̂ | x,Mλ ≤ aλ) = β⊤(Σ − ΓDiag
(
(λkdk,λ)1≤k≤K

)
Γ⊤)β

= β⊤
ΓDiag

(
(λk

(
1 − dk,λ

)
)1≤k≤K

)
Γ⊤β

As explained by (36) in the proof of Corollary 4.1, the positive definiteness of the matrix ΓDiag
(
(λk

(
1 − dk,λ

)
)1≤k≤K

)
Γ⊤

guarantees that

Var(τ̂ | x,Mλ ≤ aλ) ≤ Var(τ̂ | x)

for all β ∈ RK , with equality if and only if β = 0. □

A.6. Calibration of aλ and dk,λ

Here we discuss how to compute the threshold aλ after the acceptance probability pa and the regularization parameter
λ are set. We also discuss how to approximate the dk,λ’s in (11) via Monte Carlo.

A.6.1. Estimating aλ

As discussed in Lemma 4.1 and Section 4.2, the distribution of the ridge Mahalanobis distance Mλ can be approximated
as a weighted sum of independent χ2

1 random variables. Thus, we set aλ equal to the pa-quantile of this weighted sum,
defined as Qλ in (20).

Let FQλ
(q) = P(Qλ ≤ q) denote the CDF of Qλ. Since Qλ is a weighted sum of independent χ2

1 variables, its characteristic
function φQλ

is given by φQλ
(t) =

∏K
k=1[1 − 2iλk(λk + λ)−1t]−1/2, which can then be inverted to yield

FQλ
(q) = lim

U→+∞

FQλ,U (q)

where

FQλ,U (q) =
1
2

−
1
π

∫ U

0

sin
(

1
2

[
−t q +

∑K
k=1 arctan

(
λk

λk+λ
t
)])

t
∏K

k=1

[
1 +

(
λk

λk+λ

)2
t2
]1/4 dt (42)
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as detailed in Equation (3.2) of Imhof (1961). In practice, for any fixed U ≥ 0, FQλ,U (q) can be computed with arbitrary
precision and at a negligible cost by using any (deterministic) univariate numerical integration scheme. We can then
approximate FQλ

(q) with FQλ,U (q) by choosing U large enough. As explained in Imhof (1961), the approximation tends
to improve as the number of covariates K increases, and one can guarantee a truncation error of at most ξ > 0 in
absolute value by choosing Uξ = [ξ π (K/2)

∏K
k=1

√
λk(λk + λ)−1]−2/K . More recent algorithms for approximating FQλ

(q)
include Davies (1980) and Bausch (2013), and computationally cheaper but less accurate alternatives to approximate FQλ

are discussed in Bodenham and Adams (2016).
Finally, we approximate the pa-quantile of Qλ by

âλ = inf{q ∈ R : FQλ,Uξ
(q) ≥ pa} (43)

i.e., the pa-quantile of FQλ,U . The hat on âλ only reflects the distributional approximation of Mλ by Qλ, whereas the errors
due to numerical integration and truncation can be regarded as virtually nonexistent compared to the Monte Carlo errors
involved in the later approximations of vk,λ. In the simulations of Section 5, we use ξ = 10−4 by default.

A.6.2. Estimating dk,λ
As discussed in Section 4.2, choosing λ depends on the dk,λ’s defined in (11), which involve intractable conditional

expectations. By considering n simulated sets of K independent variables Z̃ij
i.i.d.
∼ N (0, 1) for i = 1, . . . , n and j = 1, . . . , K ,

the expectations appearing in (11) can be consistently estimated via Monte Carlo, for all k = 1, . . . , K , by

d̂k,λ =
1∑n

i=1 1(M
(i)
λ ≤ âλ)

n∑
i=1

Z̃ 2
ik 1(M

(i)
λ ≤ âλ) (44)

with M (i)
λ =

∑K
j=1 λk(λk + λ)−1Z̃ 2

ij and âλ defined in (43), where 1(A) denotes the indicator function of an event A.
We regard the computational cost of generating nK independent Normal variables as negligible compared to the

expected cost of generating 1/pa successive random assignment vectors and testing the acceptability of each assignment,
since the former can be done in parallel at virtually the same cost as generating one single Normal random variable.

A.7. Details on procedure for finding a desirable λ ≥ 0

Here we discuss the details of the procedure outlined in Section 4.2, specifically Steps 3 and 4 of that procedure.
The justification of our proposed procedure stems from the following facts. By definition, we have P(Mλ ≤ aλ | x) = pa

for all λ ≥ 0. By taking the limit as λ → +∞ under the assumptions of Lemma 4.1, we get

pa = lim
λ→+∞

P

(
K∑

k=1

λk

λk + λ
Z2
k ≤ aλ

)
= lim

λ→+∞

P

(
K∑

k=1

λkZ2
k ≤ λ aλ

)
so that

λ aλ −−−−→
λ→+∞

q∗(pa) (45)

where q∗(pa) is the pa-quantile of the distribution of
∑K

k=1 λkZ2
k . This in turn implies that, for all k = 1, . . . , K , we have

vk,λ −−−−→
λ→+∞

(
ΓDiag

(
(λj d∗

j )1≤j≤K
)
Γ⊤
)
kk

Σkk
(46)

where d∗

k = E
[
Z2
k |
∑K

k=1 λkZ2
k ≤ q∗(pa)

]
for all k = 1, . . . , K . Since the limits in (46) are strictly positive, this shows

that increasing λ beyond a certain value will no longer yield any practical gain. This is in line with the intuition that
the ridge Mahalanobis distance degenerates to the Euclidean distance when λ → +∞, as discussed in Section 4.3. Thus,
in practice, it is sufficient to search for λ only over a bounded range of values. The lower bound λ = 0 corresponds to
rerandomization with the standard Mahalanobis distance; the upper bound is determined dynamically via Step 3, which
is guaranteed to stop in finite time by using an argument similar to (45). As mentioned in Section 4.2, the step size δ can
be chosen as a fraction of the smallest strictly positive gap between consecutive eigenvalues, i.e., min{λk − λk−1 : k =

1, . . . , K such that λk > λk−1} with the convention λ0 = 0. Finally, among all the acceptable λ’s satisfying (22), Step 4
returns the λ⋆ that aims at altering the conditional covariance structure of (x̄T − x̄C ) the least, in the sense of minimizing
the distance between Cov

(
x̄T − x̄C |x,Mλ ≤ âλ

)
and the linear span of Σ, i.e.,

λ⋆ = argmin
λ∈Λ

(
min
c∈R

cΣ − ΓDiag
(
(λj d̂j,λ)1≤j≤K

)
Γ⊤

 )
where ∥Σ∥ =

√
tr(Σ⊤Σ) =

∑K
k=1 λ2

k stands for the Frobenius norm, and âλ and the d̂j,λ’s are defined in (43) and (44),
respectively. The inner minimization can be written as

min
c∈R

(
K∑

k=1

λ2
k

(
c − d̂k,λ

)2)
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Fig. 7. Average variance reduction for rerandomization and ridge rerandomization, as well as their difference (ridge rerandomization minus
rerandomization, i.e., the second plot minus the first) for NT ∈ {10, 20, 30, 40}. This is analogous to Fig. 2, but for different values of NT .

which is attained at c⋆ =
∑K

k=1 ck d̂k,λ with ck = λ2
k (
∑K

j=1 λ2
j )

−1 for all k = 1, . . . , K , thus yielding Eq. (23). The outer
minimization is then straightforward since the set Λ of candidates is finite by construction.

Finally, note that our procedure relies on computing âλ and the d̂j,λ’s; these quantities rely on nK auxiliary Normal
variables Z̃ij, which only need to be simulated once and can then be reused when testing different values of λ.

A.8. Additional simulations: Unequal sample sizes, nonlinearity, treatment effect heterogeneity, and rank deficiency

In Section 5 we considered scenarios where an equal number of units are assigned to treatment and control, covariates
are linearly related with the potential outcomes, and treatment effects are additive. In this section, we provide additional
simulation results for other scenarios. However, the results presented here are largely the same as those presented
in Section 5 — i.e., both rerandomization and ridge rerandomization are preferable over randomization, and ridge
rerandomization is preferable over rerandomization in high-dimensional and/or high-collinearity scenarios.

A.8.1. Unequal sample sizes
Similar to Section 5, we consider N = 100 units to be assigned to treatment and control. For each unit, the covariate

matrix x is still generated with (26) and the potential outcomes are generated with (27), as in Section 5. However, unlike
in Section 5, when implementing randomization, rerandomization, and ridge rerandomization, NT ̸= 50 units will be
assigned to treatment and 100 − NT units will be assigned to control.

We will consider NT ∈ {10, 20, 30, 40}, where smaller NT denotes more unequal sample sizes between treatment and
control. Similar to Section 5, we will consider collinearity ρ ∈ {0, 0.1, . . . , 0.9, 1.0} for (26), and treatment effect τ = 1
and coefficients β = 1K for (27). We will run randomization, rerandomization, and ridge rerandomization 1000 times for
each setting, and then we will compare rerandomization and ridge rerandomization in terms of (1) the average reduction
in variance across covariates, (2) relative MSE for the average treatment effect, and (3) relative average 95% confidence
interval width for the average treatment effect. Here, ‘‘relative’’ means relative to randomization.

Figs. 7, 8, and 9 show the simulation results for average reduction in variance, relative MSE, and relative average
confidence interval width, respectively. These figures are analogous to Section 5 Figs. 2, 3, 4, but for NT ̸= 50. The
results in these figures are nearly identical to those presented in Section 5: By focusing on the ‘‘Difference’’ plots,
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Fig. 8. Relative MSE of τ̂ = ȳT − ȳC under rerandomization and ridge rerandomization (relative to randomization), as well as the difference between
the two (i.e., the second plot minus the first) for NT ∈ {10, 20, 30, 40}. This is analogous to Fig. 3, but for different values of NT .

we see that ridge rerandomization tends to have (1) a higher average variance reduction, (2) lower relative MSE, and
(3) lower relative average confidence interval width, especially in high-dimensional and/or high-collinearity settings, even
if the treatment and control sample sizes are unequal. The NT = 10 subfigures suggest that ridge rerandomization’s
advantage over rerandomization may be slightly dimensioned when NT and NC are highly unequal, but nonetheless ridge
rerandomization appears preferable when K and/or ρ are large.

A.8.2. Nonlinearity
Similar to Section 5, we consider N = 100 units to be assigned to treatment and control. For each unit, the covariate

matrix x is still generated with (26) and NT = NC = 50 units will be assigned to treatment and control when implementing
randomization, rerandomization, and ridge rerandomization. However, instead of using (27) to generate the potential
outcomes, we will use the following model:

Yi(0) ∼ N (exp(x)β, 1)
Yi(1) = Yi(0) + τ

(47)

where exp(x) denotes the matrix of values ex. Again we set τ = 1 and β = 1K and consider K ∈ {10, . . . , 90} and
ρ ∈ {0, 0.1, . . . , 0.9} when generating the covariates.

Rerandomization and ridge rerandomization only aim to balance the first moments of the covariates, and thus the
simulations in Section 5 (where the potential outcomes are linearly related with the covariates) may be considered a
‘‘well-specified’’ scenario, and here we are considering a misspecified scenario where averages across potential outcomes
depend on more than just the first moments of covariates. This alternative model for the potential outcomes does
not affect rerandomization and ridge rerandomization’s ability to balance covariates’ first moments, but it does affect
their ability to precisely estimate treatment effects. Fig. 10 compares the relative MSE (compared to randomization) of
rerandomization and ridge rerandomization, and Fig. 11 does the same for relative average 95% confidence interval width.
Although ridge rerandomization does not have as clear of an advantage over rerandomization in this misspecified scenario,
it still tends to perform better than rerandomization in high-dimensional and high-collinearity settings. Furthermore,
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Fig. 9. Relative average 95% confidence interval width under rerandomization and ridge rerandomization (relative to randomization), as well as the
difference between the two (i.e., the second plot minus the first) for NT ∈ {10, 20, 30, 40}. This is analogous to Fig. 4, but for different values of NT .

Fig. 10. Relative MSE of τ̂ under rerandomization and ridge rerandomization (relative to randomization) when β = 1K in (47), as well as the
difference in relative MSE between the two (i.e., the second plot minus the first).

both rerandomization and ridge rerandomization still provide more precise inference for the average treatment effect
compared to randomization, although not as much as when the potential outcomes were generated from a linear model.
This is because the covariates still have some linear relationship with the covariates, and thus one can still obtain more



310 Z. Branson and S. Shao / Journal of Statistical Planning and Inference 211 (2021) 287–314

Fig. 11. Relative average 95% confidence interval width under rerandomization and ridge rerandomization (relative to randomization) when β = 1K
in (47), as well as the difference between the two (i.e., the second plot minus the first).

precise estimators and intervals for the average treatment effect by balancing the first moments of the covariates (Li
et al., 2018). In short, the results presented here are largely the same as those presented in Section 5, where the potential
outcomes were linearly related with the covariates.

A.8.3. Treatment effect heterogeneity
Similar to Section 5, we consider N = 100 units to be assigned to treatment and control. For each unit, the covariate

matrix x is still generated with (26) and NT = NC = 50 units will be assigned to treatment and control when implementing
randomization, rerandomization, and ridge rerandomization. However, instead of using (27) to generate the potential
outcomes, we will use the following model:

Yi(0) ∼ N (xβ, 1)
Yi(1) = Yi(0) + τ + στYi(0)

(48)

The above setup is similar to the simulation setup used in Ding et al. (2016) for studying treatment effect heterogeneity.
In the following simulations, we set τ = 1. When the heterogeneity parameter στ = 0, this simulation setup is identical
to that used in Section 5, where treatment effects are additive. In this section, we will consider στ ∈ {0.25, 0.5}; similar
to Ding et al. (2016), στ = 0.25 corresponds to moderate treatment effect heterogeneity and στ = 0.5 corresponds
to strong treatment effect heterogeneity. Furthermore, we again set β = 1K and consider K ∈ {10, . . . , 90} and
ρ ∈ {0, 0.1, . . . , 0.9} when generating the covariates.

Thus, the only simulation feature we are changing (compared to Section 5) is the way that the potential outcomes are
generated. This will affect the analysis stage but not the design stage, and thus results for the average reduction in variance
will be identical to those in Section 5, regardless of the heterogeneity parameter. Thus, in what follows, we will only study
the relative MSE and relative average 95% confidence interval width for rerandomization and ridge rerandomization.

We will implement randomization, rerandomization, and ridge rerandomization 1000 times and compute the MSE and
average confidence interval width for estimating the average treatment effect. Similar to Section 5, we focus on using the
mean-difference estimator τ̂ = ȳT − ȳC . However, unlike in Section 5, the average treatment effect is no longer simply
τ = 1, because each unit now has its own treatment effect τ ≡ Yi(1) − Yi(0) = τ + στYi(0). Thus, when computing the
MSE for randomization, rerandomization, and ridge rerandomization, we compute E[(τ̂ − τ̄ )2], where τ̄ = N−1∑N

i=1 τi.
Fig. 12 compares the relative MSE (compared to randomization) of rerandomization and ridge rerandomization, and

Fig. 13 does the same for relative average 95% confidence interval width. Once again, the results in these figures are nearly
identical to those presented in Section 5: Ridge rerandomization tends to have a lower relative MSE and lower relative
average confidence interval width, especially in high-dimensional and/or high-collinearity settings, regardless of whether
treatment effect heterogeneity is moderate (στ = 0.25) or large (στ = 0.5). We should note that the raw MSE and average
confidence interval width (not shown) for randomization, rerandomization, and ridge rerandomization all increased from
στ = 0.25 to στ = 0.5; however, their relative performance to each other did not substantially change from moderate
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Fig. 12. Relative MSE of τ̂ = ȳT − ȳC under rerandomization and ridge rerandomization (relative to randomization), as well as the difference between
the two (i.e., the second plot minus the first) for στ ∈ {0.25, 0.5}. This is analogous to Fig. 3, but for heterogeneous treatment effects using (48) to
generate the potential outcomes.

to strong treatment effect heterogeneity, as shown by Figs. 12 and 13. In short, even though inference becomes more
challenging when treatment effect heterogeneity increases, ridge rerandomization still appears to exhibit an advantage
over rerandomization in high-dimensional and/or high-collinearity settings.

A.8.4. Rank deficiency
Similar to Section 5, we consider N = 100 units where 50 units are assigned to treatment and 50 units are assigned

to control. For each unit, the covariate matrix x is still generated with (26) and the potential outcomes are generated
with (27), where β = 1K and τ = 1. Again we consider ρ ∈ {0, 0.1, . . . , 0.9} when generating the covariates. For this
subsection, we will focus on the case where there are K = 101 covariates.

When K = 101, the covariates’ covariance matrix Σ is rank-deficient, because N < K . In other words, Σ is not
invertible, the Mahalanobis distance is undefined, and rerandomization cannot be implemented. Morgan and Rubin (2012)
noted that when N ≤ K , the pseudo-inverse for Σ can be used when defining the Mahalanobis distance; however, when
we attempted this on our simulated data, we found that the resulting Mahalanobis distance was constant across all
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Fig. 13. Relative average 95% confidence interval width under rerandomization and ridge rerandomization (relative to randomization), as well as the
difference between the two (i.e., the second plot minus the first) for στ ∈ {0.25, 0.5}. This is analogous to Fig. 4, but for heterogeneous treatment
effects using (48) to generate the potential outcomes.

randomizations, thereby leaving it uninformative. In our own past exploration of the Mahalanobis distance using the
pseudo-inverse (not shown), we have found this to also occasionally occur with real datasets. Interesting future work
would be investigating when using the pseudo-inverse for Σ leads to a properly defined Mahalanobis distance.

In any case, the ridge Mahalanobis distance Mλ in (6) is still defined even when N ≤ K , and we can still assess the
benefits of ridge rerandomization over randomization in this case, even if we cannot assess rerandomization. Similar to
the previous sections, we implemented randomization and ridge rerandomization 1000 times under this scenario and
computed (1) the average reduction in variance across covariates, (2) relative MSE for the average treatment effect,
and (3) relative average 95% confidence interval width for the average treatment effect. Fig. 14 shows the results for
ρ ∈ {0, 0.1, . . . , 0.9}. Once again, we see that ridge rerandomization reduces the average variance of covariate mean
differences compared to randomization, and it also leads to a lower MSE and narrower confidence intervals when
estimating the average treatment effect. This is especially the case when collinearity is high. This suggests that ridge
rerandomization may be a viable experimental design strategy when N ≤ K .
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Fig. 14. Average reduction in variance, relative MSE, and relative average confidence interval width for ridge rerandomization (in comparison with
randomization) when K = 101 for collinearity ρ ∈ {0, 0.1, . . . , 0.9}.
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