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Abstract

This thesis studies the implementation and properties of a novel criterion for model

comparison, with a keen interest in the task of selecting Bayesian state-space models. This

criterion, based on the Hyvärinen score and termed the H-factor, was recently advocated in

the decision-theoretic literature as an appealing alternative to the ubiquitous Bayes factor,

particularly in settings where the presence of vague prior distributions renders the latter

unreliable. The practical use of H-factors requires them to be numerically estimated, which

we propose to consistently achieve by using sequential Monte Carlo methods. The uncertainty

of the model choice, resulting from this estimation, is quantified by using new advances

in unbiased Markov chain Monte Carlo methods to construct confidence intervals for the

exact H-factors. Proving theoretical guarantees for this new criterion in large samples will

bring us to the realm of Bayesian asymptotics. It will require us to look into the consistency

and asymptotic Normality of posterior distributions, à la Bernstein-von Mises, in general

and possibly misspecified state-space models.
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Preface

Stemming from the use of a novel criterion to perform Bayesian model comparison in
contexts where vague prior distributions are involved, this thesis explores the estimation of
Bayesian model comparison criteria, the quantification of their consequent uncertainty, and the
derivation of their asymptotic properties. A brief summary of each chapter is provided below.

Chapter 1 [Joint work with Pierre E. Jacob, Jie Ding, and Vahid Tarokh]

We consider the H-factor, based on the Hyvärinen score, as an alternative to traditional
Bayes factor in settings where the models at hand may involve vague prior distributions
on their parameters. We propose a method to consistently estimate H-factors for
parametric models, using sequential Monte Carlo algorithms. We prove the consistency
of H-factors under strong regularity assumptions, which notably include the yet unproved
consistency of posterior distributions for general state-space models.

Chapter 2 [Joint work with Pierre E. Jacob]

Practical uses of Bayes or H-factors to perform model selection typically involve
estimating these intractable quantities, and using estimated factors as proxies to guide
the decision process. This raises the question of quantifying the uncertainty induced by
this estimation on the final choice. We address this concern by constructing confidence
intervals for the intractable factors. Our proposed construction uses recent advances in
unbiased Markov chain Monte Carlo methods and is conveniently parallel by design.

Chapter 3 [Joint work with Judith Rousseau, Arnaud Doucet, and Pierre E. Jacob]

The consistency of posterior distributions and their asymptotic Normality are often
required to prove theoretical guarantees of Bayesian procedures, and are implicitly
assumed in the implementation of many numerical methods. Yet, general proofs of
these results in the context of state-space models on non-compact spaces are still elusive.
We investigate the ingredients needed for such results to hold, and we look for technical
conditions that would allow for possibly misspecified state-space models.

vii



Notations

K+,K−,K∗ . . . Subsets of non-negative, non-positive, non-zero elements of K ⊆ R.

Jm,nK . . . . . . Subset of integers {i ∈ Z : m ≤ i ≤ n}.

Ym:n . . . . . . . Subsequence (Yi)m≤i≤n for m ≤ n, and ∅ if m > n by convention.

λk(A) . . . . . . k-th smallest eigenvalue of a symmetric A ∈ Rn×n for k ∈ J1, nK.

‖A‖ . . . . . . . Spectral norm of A ∈ Rm×n given by
√
λn(A>A).

|A| . . . . . . . . Determinant of A ∈ Rm×n.

In . . . . . . . . Identity matrix of size n× n.

1B . . . . . . . . Indicator function of a set B, i.e. 1B(x) = 1 if x ∈ B and 0 otherwise.

δx . . . . . . . . Dirac measure at x, i.e. δx(A) = 1A(x) for all events A.

δij . . . . . . . . Kronecker delta of (i, j), i.e. δij = 1 if i = j and 0 otherwise.

∂f(y)/∂y(k) . . . k-th partial derivative of f : Rd → R at y ∈ Rd for k ∈ J1, dK.

NB(m, v) . . . . Negative binomial distribution with 0 < m < v parametrized by its mean
and variance. With p = (v −m)/m and r = m2/(v −m), its probability
mass function is given by k 7→

(
k+r−1
k

)
(1− p)rpk for k ∈ N.

Gamma(α, β) . . Gamma distribution with shape α > 0 and rate β > 0. Its probability
density function is given by x 7→ βα

Γ(α) x
α−1 e−βx 1(0,+∞)(x).

Inv-χ2(ν, s2) . . . Scaled inverse chi square distribution with degrees of freedom ν > 0
and scale s > 0, corresponding to the distribution of the inverse of a
Gamma(ν/2, s2ν/2) random variable. Its probability density function is
given by x 7→ (ν/2)ν/2

Γ(ν/2) s
νx−(ν/2+1)e−νs

2/(2x) 1(0,+∞)(x).

tν (µ, s2) . . . . . Scaled Student’s t-distribution with degrees of freedom ν > 0, mean
µ ∈ R, and scale s > 0. Its probability density function is given by
x→ Γ((ν+1)/2)

Γ(ν/2)
√
νπs2

(
1 + 1

ν
(x−µ

s
)2
)−(ν+1)/2

.

dTV (p, q) . . . . . Total variation distance between the probability distributions p and q.

viii
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1. Bayesian model comparison with the Hyvärinen score

The work in this chapter has been done in collaboration with Pierre E. Jacob (Department of

Statistics, Harvard University), Jie Ding (School of Statistics, University of Minnesota), and

Vahid Tarokh (Department of Electrical and Computer Engineering, Duke University). It cor-

responds to the paper entitled Bayesian model comparison with the Hyvärinen score: computa-

tion and consistency, recently published in the Journal of the American Statistical Association.

1.1 Introduction

1.1.1 Bayesian model comparison

Bayesian model comparison is challenging in situations where the candidate models involve

either vague or improper prior distributions on some of their parameters. The Bayes factor

(Jeffreys, 1961) between two models — defined as the ratio of their marginal likelihoods —

is a widely used approach to model comparison. If one of the candidate models includes

the data-generating process, that model is termed well-specified or correct, and the Bayes

factor can be interpreted as a ratio of odds, which updates the relative probabilities of the

models being correct. In the misspecified or M-open setting (Bernardo and Smith, 2000),

the marginal log-likelihood can be interpreted as a measure of out-of-sample predictive

performance assessed with the logarithmic scoring rule (e.g. Kass and Raftery, 1995; Key,

Pericchi and Smith, 1999; Bernardo and Smith, 2000). Scoring rules are loss functions for

the task of predicting an observation y with a probability distribution p, and the logarithmic

scoring rule quantifies predictive performance with − log p(y). Under regularity conditions,

the Bayes factor leads to consistent model selection as the number of observations goes to

infinity (e.g. Dawid, 2011; Lee and MacEachern, 2011; Walker, 2013; Chib and Kuffner, 2016).

However, if any of the models involves either vague or improper prior distributions on

their parameters, the Bayes factor can take arbitrary values and becomes unreliable for

any fixed sample size. This is problematic as vague priors are extensively used in practice,

2



1. Bayesian model comparison with the Hyvärinen score

for instance when uniform distributions are specified on intervals of plausible values (e.g.

Knape and de Valpine, 2012, see Section 1.4.2). Improper priors also arise from theoretical

considerations, for instance as Jeffreys priors (e.g. Chapter 3 of Robert, 2007). Our paper

takes the use of such priors by practitioners as a starting point, and addresses the question of

model comparison in this context where one cannot rely on the Bayes factor. This limitation

of the Bayes factor, sometimes referred to as Bartlett’s paradox (Bartlett, 1957; Kass and

Raftery, 1995), is a long-lasting challenge in Bayesian model comparison (Chapter 7 of Robert,

2007), as it seems to suggest that prior specification should take into account the potential

use (or misuse) of Bayes factors. Many approaches have been proposed to tackle this issue,

either by modifying the Bayes factor (e.g. O’Hagan, 1995; Berger and Pericchi, 1996; Berger,

Pericchi and Varshavsky, 1998; Berger and Pericchi, 2001) or bypassing it altogether (e.g.

Kamary, Mengersen, Robert and Rousseau, 2014, and references therein). In this paper, we

investigate an alternative criterion that is 1) principled for any sample size, thanks to an

interpretation in terms of predictive performance and scoring rules, 2) enjoys asymptotic

consistency properties, and 3) is robust to the arbitrary vagueness of prior distributions.

Since the Bayes factor is associated with predictive performance under the logarithmic

scoring rule, natural alternatives arise by considering other scoring rules (Dawid and Musio,

2015; Dawid, Musio and Ventura, 2016). We consider the Hyvärinen score (Hyvärinen,

2005), which is proper, local, and homogeneous (Dawid and Lauritzen, 2005; Parry, Dawid

and Lauritzen, 2012; Ehm and Gneiting, 2012). Given T observations (y1, ..., yT ) ∈ YT and

a finite set M of candidate models, each inducing a joint marginal density of (Y1, ..., YT )

denoted by pM for M ∈M, we can regard the log-Bayes factor as a comparison of predictive

sequential (or prequential, Dawid, 1984) log-score − log pM(y1:T ) = ∑T
t=1− log pM(yt|y1:t−1),

where by convention pM(y1|y1:0) denotes the prior predictive distribution of Y1 under model

M . By contrast, for any dy-dimensional observation y ∈ Rdy and twice differentiable density

3



1. Bayesian model comparison with the Hyvärinen score

p on Rdy , the Hyvärinen score is defined as

H(y, p) = 2 ∆ log p(y) + ‖∇ log p(y)‖2, (1.1)

where ∇ and ∆ respectively denote the gradient and Laplacian operators with respect to the

variable y. We would then select the model with the smallest prequential Hyvärinen score

HT (M) =
T∑
t=1
H
(
yt, pM(dyt|y1:t−1)

)
. (1.2)

We will refer to this prequential Hyvärinen score as the H-score. Homogeneity is the key

property of the Hyvärinen score which is not shared by the logarithmic scoring rule. It

ensures that the score does not depend on normalizing constants of candidate densities,

hence offering robustness to vague priors and allowing for improper priors. For example,

if M denotes the toy model Y1, ..., YT |µ
i.i.d.∼ N (µ, 1) with prior µ ∼ N (0, σ2

0) and known

hyperparameter σ0 > 0, then Yt |Y1:t−1 ∼ N
(
µt−1, σ

2
t−1 + 1

)
for all t ∈ J0, T K by conjugacy,

where σ2
t = (t + σ−2

0 )−1 and µt = σ2
t

∑t
i=1 Yi for all t ∈ J1, T K. The log-score − log pM(y1:T )

becomes equivalent to log σ0 when σ0 → +∞, and thus diverges to +∞ as σ0 increases. In

other words, one could obtain Bayes factors that prefer virtually any other model over this one,

by simply increasing σ0 thus making the prior on µ arbitrarily vague, for any fixed number

of observations T . On the other hand, the prequential Hyvärinen score, computed from

(1.1) and (1.2) using conjugacy, converges to a finite limit as σ0 → +∞, so that increasing

σ0 can only influence the prequential Hyvärinen score to a limited extent. Throughout the

article, the notion of robustness to arbitrary vagueness of priors is to be understood in that

sense. Such a robustness is desirable when models are misspecified or when the specification

of vague priors is dictated by practical considerations rather than a genuine reflection of

one’s prior knowledge, as is sometimes the case for parameters of complex state-space models

(e.g. see Section 1.4.2). The limit of HT (M) as σ0 → +∞ also unambiguously defines the

value of the score for a flat improper prior p(µ) ∝ 1.

4



1. Bayesian model comparison with the Hyvärinen score

Without conjugacy, the calculation of the Hyvärinen score involves typically intractable

integrals with respect to the sequence of partial posteriors. In this chapter, we show how to use

sequential Monte Carlo (SMC) methods to consistently estimate H-scores, thereby enabling

their use in Bayesian model comparison for general parametric models. More specifically, we

show that this estimation can be achieved for models with tractable likelihoods via SMC

samplers (Chopin, 2002; Del Moral, Doucet and Jasra, 2006; Zhou, Johansen and Aston,

2016). Furthermore, the case of generic state-space models can be covered by using SMC2

(Fulop and Li, 2013; Chopin, Jacob and Papaspiliopoulos, 2013) under the mild requirement

that we can simulate the latent state process and evaluate the measurement density (Bretó,

He, Ionides and King, 2009; Andrieu, Doucet and Holenstein, 2010), plus some integrability

conditions. Our second contribution is to prove that, under regularity conditions allowing

for misspecified settings, the H-score is consistent for model selection. Finally, motivated

by an application to count-valued data in a population dynamics context, we propose a

modified score for discrete observations that builds on recent complete characterizations of

proper scoring rules on discrete spaces (McCarthy, 1956; Hendrickson and Buehler, 1971;

Dawid, Lauritzen and Parry, 2012; Dawid, Musio and Columbu, 2017).

This chapter is organized as follows. In Section 1.2, we consider parametric models with

tractable likelihoods. We present how the H-score can be estimated via SMC samplers, and

show that it leads to consistent model selection, under regularity assumptions. In Section

1.3, we generalize the approach to nonlinear non-Gaussian state-space models, using SMC2,

and we present a simulation study with Lévy-driven stochastic volatility models. In Section

1.4, we extend the proposed criterion to discrete observations and compare diffusion models

for population dynamics. Possible limitations and directions for future research are discussed

in Section 1.5. Implementation details are presented in Appendix A. Formal proofs and

additional simulations are provided in Appendix B. The R code producing the figures is

available at github.com/pierrejacob/bayeshscore.

5
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1. Bayesian model comparison with the Hyvärinen score

1.1.2 Terminology and additional notations

Given two models M1 and M2, the difference of their H-scores HT (M2) −HT (M1) will be

termed the H-factor of M1 against M2. Each observation y = (y(1), ..., y(dy))> is a vector of

dimension dy ∈ N∗ and takes values in Y ⊆ Rdy . Aside from Section 1.4, the observations

are assumed to be continuous variables. Continuous probability distributions are assumed

to admit densities with respect to the Lebesgue measure. We let P? (resp. E?) denote the

probability (resp. expectation) induced by the data-generating mechanism of the stochastic

process (Yt)t∈N∗ . We use the abbreviation P?-a.s. for P?-almost surely. Assuming its existence,

we let p? denote the probability density or mass function associated with P?. When dealing

concurrently with several models from a setM = {Mj : j ∈ J1,mK}, we use the subscript

j ∈ J1,mK to condition on a particular model. Each candidate model Mj is parametrized

by a parameter θj in a space Tj ⊆ Rdθj of dimension dθj ∈ N∗. Explicit dependence on

models is dropped from the notation whenever possible. The H-score HT (M) of a model

M is a random variable that depends on the observations, although the notation makes

this dependence implicit. When the context is clear, we use the notation HT (M) to denote

both the random score and its realization.

1.2 H-score for models with tractable likelihoods

We first describe how the H-score can be estimated with SMC samplers, before turning to

asymptotic properties and numerical investigations. The H-score of a model M , defined

in (1.2), can be rewritten as

HT (M) =
T∑
t=1

dy∑
k=1

 2 ∂
2 log p(yt|y1:t−1)

∂yt2(k)
+
(
∂ log p(yt|y1:t−1)

∂yt(k)

)2
 . (1.3)

The marginal predictive densities appearing in (1.3) correspond to integrals with respect

to posterior distributions, as p(yt|y1:t−1) =
∫
p(yt|θ, y1:t−1) p(θ|y1:t−1) dθ.

6



1. Bayesian model comparison with the Hyvärinen score

1.2.1 Computation of the H-score using SMC

As noted in Dawid and Musio (2015), an interchange of differentiation and integration under

appropriate regularity conditions (see Appendix B.4) shows that HT (M) is equal to

T∑
t=1

dy∑
k=1

2Et

∂2 log p(yt|y1:t−1,Θ)
∂yt2(k)

+
(
∂ log p(yt|y1:t−1,Θ)

∂yt(k)

)2
− (Et

[
∂ log p(yt|y1:t−1,Θ)

∂yt(k)

])2
 (1.4)

where the conditional expectations Et are taken with respect to the posterior distributions

Θ ∼ p(dθ|y1:t). The terms of the sum in (1.4) might not be well-defined when improper

posterior distributions arise from improper priors. If τ denotes the first index such that the

posterior p(dθ|y1:τ ) is proper, then we would redefine the H-score as ∑T
t=τ H (yt, p(dyt|y1:t−1)).

This issue is not specific to the H-score, and for simplicity of exposition, we will thereafter

assume that posterior distributions are proper after assimilating one observation.

In general, expectations with respect to p(dθ|y1:t) for all successive t ∈ J1, T K can be

consistently estimated using sequential or annealed importance sampling (Neal, 2001) and

SMC samplers (Chopin, 2002; Del Moral et al., 2006). An SMC sampler starts by sampling a

set of Nθ particles θ(1:Nθ) = (θ(1), . . . , θ(Nθ)) independently from an initial distribution q(dθ),

e.g. a uniform distribution on a set (e.g. Fearnhead and Taylor, 2013), the prior distribution

p(dθ) when it is proper, or more generally an approximation of the first proper posterior

distribution. The algorithm then assigns weights, resamples, and moves these particles in

order to approximate p(dθ|y1:t) for each t ∈ J1, T K. We can move samples from a posterior

distribution to the next by successively targeting intermediate distributions whose densities

are proportional to p(θ|y1:t)p(yt+1|y1:t, θ)γt,j , where 0 = γt,0 < γt,1 < ... < γt,Jt = 1 with

Jt ∈ N∗. The temperatures γt,j can be determined adaptively to maintain a chosen level

of non-degeneracy in the importance weights of the particles, e.g. by forcing the effective

sample size to stay above a desired threshold or by imposing a minimum number of unique

particles. The resampling steps can be performed with various schemes (see Douc and

7
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Cappé, 2005; Murray, Lee and Jacob, 2016; Gerber, Chopin and Whiteley, 2017), and the

move steps with any Markov chain Monte Carlo (MCMC) method. Further details about

the implementation of SMC samplers are provided in Appendix A.1. In the numerical

experiments of this chapter and its supplementary material in Appendix B, the resampling

is done with the Srinivasan sampling process (SSP) described in Gerber et al. (2017), and

the moves consist of independent Metropolis–Hastings steps with proposals obtained as

mixtures of Normal distributions fitted on the current weighted particles. We will use prior

distributions as a choice of initial distribution q(dθ).

Sequential estimation of the H-score can thus be achieved at a cost comparable to that of

estimating the log-evidence. Indeed, both can be obtained from the same SMC runs. However,

numerical experiments suggest that the estimator of the H-score tends to have a larger relative

variance than the estimator of the log-evidence, for a given number of particles. This can be

explained informally as follows. For the evidence, the Monte Carlo approaches approximate

expectations of the form E[p(yt|y1:t−1,Θ)] with respect to the posterior p(dθ|y1:t−1). On the

other hand, the H-score involves expectations such as E[∇y log p(yt|y1:t−1,Θ)] with respect to

p(dθ|y1:t). When t is large, the distributions p(dθ|y1:t−1) and p(dθ|y1:t) are similar, whereas

the integrands θ 7→ p(yt|y1:t−1, θ) and θ 7→ ∇y log p(yt|y1:t−1, θ) are different. In some

generality, the first type of integrands will be easier to integrate than the second one,

e.g. when the former is bounded in θ while the latter is polynomial in θ, as in Normal

location models (see Section 1.2.3).

1.2.2 Consistency of the H-score for i.i.d. settings

Irrespective of model misspecification, the H-score can be justified for finite samples since

it results from assessing predictions with a scoring rule that satisfies desirable properties

such as propriety, locality, and homogeneity (Parry et al., 2012; Ehm and Gneiting, 2012).

Moreover, under regularity conditions, we can show that the H-score also satisfies sensible

8
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asymptotic properties: as the number of observations grows, choosing the model with the

smallest H-score eventually leads to selecting the model closest to the data-generating process

in a certain sense, as made precise below. Some general perspective on consistency of

prequential scores can be found in Dawid and Musio (2015).

Here we consider i.i.d. models and assume that (Yt)t∈N∗ is a sequence of i.i.d. observations

drawn from p?. State-space models and more general data-generating processes will be covered

in Section 1.3.2. For simplicity, we focus on continuous univariate (dy = 1) observations. Our

results will only be meaningful for models that are either non-nested, or nested with at most one

model being well-specified. The case of well-specified nested models is discussed at the end of

this section, with more details in Appendix B.5.4. Our consistency result rely on the expression

HT (M) =
(

T∑
t=1

Et
[
H (yt, p(dyt|y1:t−1,Θ))

])
+
(

T∑
t=1

Vt

[
∂ log p(yt|y1:t−1,Θ)

∂yt

])
(1.5)

which follows directly from rearranging the terms in (1.4), where Et and Vt respectively denote

conditional expectations and variances with respect to Θ ∼ p(dθ|y1:t). The key insight is that,

in non-nested settings, as the number of observations grows and the posterior distribution

p(dθ|y1:T ) concentrates to a point mass, the sum of the conditional expectations in (1.5) will

eventually dominate and drive the behavior of the H-score, while the sum of the conditional

variances acts as a penalty term that becomes negligible. This penalty term only becomes

crucial when comparing well-specified nested models, as discussed at the end of this section.

The result below considers model selection consistency for two i.i.d. models M1 and

M2, each describing the data respectively as Y1, ..., YT | θj
i.i.d.∼ pj(dy|θj), with parameter

θj ∈ Tj and prior density pj(θj), for j ∈ {1, 2}.

Theorem 1. Assume (Yt)t∈N∗ is a sequence of i.i.d. draws from p?. Assume M1 and M2 both

satisfy the following conditions, where models are omitted from the notation and probabilistic

statements are P?-almost sure:

9
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(a) For all t ∈ N∗ and y1:t ∈ Yt, θ 7→ p(yt|θ) p(θ|y1:t−1) is integrable on T.

(b) For all t ∈ N∗ and θ ∈ T, yt 7→ p(yt|θ) is twice differentiable on Y.

(c) For all t ∈ N∗, there exist integrable functions h1,t and h2,t such that, for all (y1:t, θ) ∈

Yt × T, |p(θ|y1:t−1) ∂p(yt|θ)/∂yt| ≤ h1,t(θ) and |p(θ|y1:t−1) ∂2p(yt|θ)/∂yt2| ≤ h2,t(θ).

(d) There exists θ? ∈ T such that, if Θt ∼ p(dθ|Y1:t) for all t ∈ N∗, then Θt
D−−−−→

t→+∞ θ?.

(e) There exist a constant L > 0 and a neighborhood Uθ? of θ? such that, for all t ∈ N∗,

θ 7→ H (Yt, p(dyt|θ)) and θ 7→ ∂ log p(Yt|θ)/∂yt are L-Lipschitz functions.

(f) There exist α1 > 1 and α2 > 1 such that supt∈N∗ E [ |H (Yt, p(dyt|Θt)) |α1 |Y1:t ] < +∞

and supt∈N∗ E
[
(∂ log p(Yt|Θt)/∂yt)2α2 |Y1:t

]
< +∞, where the conditional expectations

are with respect to the posterior distribution Θt ∼ p(dθ|Y1:t).

(g) E?
[
|H (Y, p(dy|θ?))|

]
< +∞ and p?(y) ∂ log p(y|θ?)/∂y −−−−−→

|y|→+∞
0.

We also assume that the data-generating density p? is such that y 7→ p?(y) is twice differentiable

and E?[|H (Y, p?(dy))|] < +∞. If all the conditions are met, then we have

1
T

(
HT (M2)−HT (M1)

) P?−a.s.−−−−→
T→+∞ DH(p?,M2)−DH(p?,M1) (1.6)

where, for each j ∈ {1, 2}, the quantity

DH(p?,Mj) = E?
[
H
(
Y, pj(dy|θ?j )

)]
− E?

[
H (Y, p?(dy))

]
(1.7)

satisfies DH(p?,Mj) ≥ 0, with DH(p?,Mj) = 0 if and only if pj(y|θ?j ) = p?(y) for all y ∈ Y.

The assumptions listed in Theorem 1 are strong, which allows for more intuitive proofs.

Our numerical experiments suggest that (1.6) can hold when these conditions are not met

(e.g. see Section 1.2.3). Conditions (a) to (c) ensure the validity of (1.5); (d) assumes the

concentration of the posterior to a point mass; (e) to (f) ensure suitable convergence of
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posterior moments; and (g) ensures the strict propriety of the H-score and its definiteness for

p?. Further discussion on these conditions and detailed proofs are provided in Appendix B.5.

Theorem 1 provides insights into the asymptotic behavior of the H-score. Using in-

tegration by parts, we have

DH(p?,Mj) =
∫ (

∂ log p?(y)
∂y

−
∂ log pj(y|θ?j )

∂y

)2

p?(y)dy (1.8)

so that DH(p?,Mj) can be interpreted as a divergence between the data-generating distribution

p? and model Mj. As long as E? [H (Y, p1(dy|θ?1))] 6= E? [H (Y, p2(dy|θ?2))], the H-score

asymptotically chooses the model closest to the data-generating distribution p? with respect

to the divergence DH. In particular, if M1 is well-specified and M2 is misspecified, then

DH(p?,M1) = 0 < DH(p?,M2), which leads to HT (M2) − HT (M1) > 0 for all sufficiently

large T , P?-almost surely. In other words, the H-score eventually chooses a well-specified

model M1 over a misspecified model M2.

The divergence DH(p?,Mj) appearing in (1.8) is sometimes referred to as the relative

Fisher information divergence between p? and pj(dy|θ?j ) (e.g. Walker, 2016; Holmes and

Walker, 2017). It should be contrasted to the divergence associated with the log-score: under

similar assumptions, one can prove (e.g. Dawid, 2011) that

1
T

((
− log p2(Y1:T )

)
−
(
− log p1(Y1:T )

)) P?−a.s.−−−−→
T→+∞ KL(p?,M2)−KL(p?,M1)

where KL(p?,Mj) = E?
[
− log pj(Y |θ?j )

]
−E? [− log p?(Y )] denotes the Kullback-Leibler diver-

gence between p? and pj(dy|θ?j ). In other words, the log-score − log pj(Y1:T ) asymptotically

favors the model that is the closest to p? with respect to the Kullback-Leibler divergence

KL(p?,Mj), whereas the H-score HT (Mj) asymptotically favors the model that is the closest

to p? with respect to the divergence DH(p?,Mj).

When only one of the candidate models is well-specified, the log-Bayes factor and the

H-factor both agree on consistently selecting it. When both M1 and M2 are misspecified,

11
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each criterion selects a model according to its associated divergence. Despite being related

(e.g. Bobkov, Gozlan, Roberto and Samson, 2014, and references therein), the geometries

induced by these divergences differ, leading the log-Bayes factor and the H-factor to select

possibly different models (see case 3 in Section 1.2.3). In the presence of informative priors,

deciding which score to use in such misspecified settings is then a matter of preferences

and further practical considerations; in this article we focus on the case of vague priors for

which Bayes factors are not recommendable, as discussed earlier.

If E? [H (Y, p1(dy|θ?1))] = E? [H (Y, p2(dy|θ?2))], the limit in (1.6) becomes 0 and calls for

a more careful look at the higher order penalty term formed by the conditional variances

in (1.5). Such a refinement is needed if M1 is nested in M2, in the sense of Eq. (9) in

Berger and Pericchi (1996), and both models are well-specified. In other words, we have

T2 = {(θ1, η) ∈ Ξ1 × Ξ2} ⊆ Rk1 × Rk2−k1 and T1 ⊆ Ξ1 for some k1, k2 ∈ N with k2 > k1 > 0,

and there exists η?1 ∈ Ξ2 such that p1(y|θ1) = p2(y|θ1, η
?
1) for all (y, θ1) ∈ Y× T1. There also

exists θ?1 ∈ T1 such that p?(y) = p1(y|θ?1) = p2(y|θ?2) for all y ∈ Y, where θ?2 = (θ?1, η?1). The

particular case of nested Normal linear models is discussed in Sections 8 and 9 of Dawid

and Musio (2015). Under regularity conditions, and if the parameters are orthogonal such

that E?[∇η∇θ1 log p2(Y |θ?1, η?1)] = 0, we conjecture that

HT (M2)−HT (M1) = δ21 log T + o(log T )

as T →∞, in P?-probability, where the difference δ21 in model dimensions appears as

δ21 = E?

(∇η
∂ log p2(Y |θ?2)

∂y

)>
E?[−∇2

η log p2(Y |θ?2)]−1
(
∇η

∂ log p2(Y |θ?2)
∂y

) > 0.

This would imply that HT (M2) −HT (M1) → +∞ as T → +∞, in P?-probability, so that

the H-score asymptotically chooses the model M1 of smaller dimension, similarly to the

log-Bayes factor for which log p1(Y1:T )− log p2(Y1:T ) = (1/2)(k2 − k1) log T + o(log T ) under

suitable assumptions (e.g. Moreno, Girón and Casella, 2010; Rousseau and Taeryon, 2012;
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Chib and Kuffner, 2016). Heuristic justification and numerical illustration of this postulate

are provided in Appendices B.5.4 and B.5.5. We leave more formal studies of the H-score

in nested well-specified settings for future research.

As an aside, we need to contrast the prequential approach described in (1.2) with a

batch approach, where one would assess the predictive performance of model M at once via

Hbatch
T (M) = H (y1:T , pM(dy1:T )). This batch approach would allow approximations using

standard Markov chain Monte Carlo methods. However, the batch approach is generally

not consistent for model selection (see Section 8.1 in Dawid and Musio, 2015). Therefore,

the prequential framework not only has a natural interpretation that relates to sequential

probability forecasts (Dawid, 1984), but is also necessary for consistency. This leads to the

task of approximating all the successive predictive distributions p(dyt|y1:t−1), as described

in Section 1.2.1. This distinction does not arise for the log-score, for which we always have

− log p(y1:T ) = −∑T
t=1 log p(yt|y1:t−1). One consequence of the sequential approach is that

different orderings of the observations lead to different sequences of predictive distributions,

hence yielding different values of the H-score. This might be undesirable in settings where

the observations are not naturally ordered (e.g. i.i.d. or spatial data). For large samples,

this issue is mitigated by the convergence of rescaled H-scores to limits that do not depend

on the ordering of the observations (cf. Theorem 1). For small samples, one could average

the H-score over different permutations of the data, or use a random ordering of the data

within each SMC run (see Section 1.2.3), at the cost of extra computations.

1.2.3 Numerical illustration with Normal models

Inspired by Section 3.2. of O’Hagan (1995), we consider the two Normal models

M1 : Y1, ..., YT | θ1
i.i.d.∼ N

(
θ1, 1

)
, θ1 ∼ N

(
0, σ2

0

)
.

M2 : Y1, ..., YT | θ2
i.i.d.∼ N (0, θ2) , θ2 ∼ Inv-χ2

(
ν0, s

2
0

)
.
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The positive hyperparameters are chosen as σ2
0 = 10, ν0 = 0.1, and s2

0 = 1. We compare

M1 and M2, using data generated as Y1, ..., YT
i.i.d.∼ N (µ?, σ2

?), in the following four settings:

(1) (µ?, σ2
?) = (1, 1), i.e.M1 is well-specified while M2 is not; (2) (µ?, σ2

?) = (0, 5), i.e.M2 is

well-specified while M1 is not; (3) (µ?, σ2
?) = (4, 3), i.e. both M1 and M2 are misspecified;

(4) (µ?, σ2
?) = (0, 1), i.e. both M1 and M2 are well-specified.

Conjugacy allows all the posterior distributions, scores, and divergences to be computed

in closed form. The posteriors under M1 and M2 concentrate respectively around θ?1 = µ?

and θ?2 = σ2
? + µ2

?. We compute DH and the Kullback-Leibler divergence for Normal densities

analytically (see Section 6.1 of Dawid and Musio, 2015) and get the theoretical limits

DH(p?,M2)−DH(p?,M1) = µ2
?

σ2
? (µ2

? + σ2
?)
− (σ2

? − 1)2

σ2
?

, (1.9)

KL(p?,M2)−KL(p?,M1) = 1
2 log

(
µ2
? + σ2

?

σ2
?

)
− (σ2

? − 1)− log (σ2
?)

2 , (1.10)

which depend on the values of |µ?| and σ2
?. For each of the four cases, we generate T = 1000

observations and perform 5 runs of SMC with Nθ = 1024 particles to estimate the log-Bayes

factors and H-factors of M1 against M2. Each run uses a different ordering of the data,

sampled uniformly from all the possible permutations. The results are shown in Figure

1.1. H-factors and log-Bayes factors are overlaid on the same plots in order to track their

evolution jointly, but their values should not be directly compared. As expected in cases

1 and 2, the H-factor selects the well-specified model and diverges to infinity at a linear

rate, with respective slopes matching the theoretical limits 0.5 and -3.2 from (1.9). Similar

behavior is obtained for the log-Bayes factor, which correctly diverges to infinity at the same

linear rate, with theoretical slopes given by (1.10). In case 3, both models are misspecified,

and (1.9)-(1.10) with (µ?, σ2
?) = (4, 3) yield DH(p?,M2) − DH(p?,M1) ≈ −1.05 < 0 and

KL(p?,M2)−KL(p?,M1) ≈ 0.47 > 0. This leads the Bayes factor and the H-factor to favor

different misspecified models. In fact, when both M1 and M2 are misspecified, there are
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Figure 1.1. Estimated log-Bayes factors (log-BF) and H-factors (HF) of M1 against M2, computed
for 5 replications (thin solid lines), under four i.i.d. data-generating processes: N (1, 1) (Case 1),
N (0, 5) (Case 2), N (4, 3) (Case 3), and N (0, 1) (Case 4). In each plot, the observations are fixed
but randomly ordered, so that the variability within each factor is due to Monte Carlo error and
random permutation of the data. See Section 1.2.3.

infinitely many combinations of (|µ?|, σ2
?) ∈ R2

+ for which DH(p?,M2) < DH(p?,M1) whereas

KL(p?,M2) > KL(p?,M1). Indeed, if we define the boundary BH(σ2
?) = |σ2

? − 1|(2− σ2
?)−1/2

for σ2
? ∈ (0, 2) and BH(σ2

?) = +∞ for σ2
? ∈ [2,+∞), then we have DH(p?,M2) = DH(p?,M1)

(resp. > and <) for |µ?| = BH(σ2
?) (resp. > and <). By contrast, KL(p?,M2) = KL(p?,M1)

if and only if |µ?| = BKL(σ2
?), where BKL(σ2

?) = (exp (σ2
? − 1)− σ2

?)1/2 for all σ2
? > 0. Thus,

whenever BKL(σ2
?) < |µ?| < BH(σ2

?), the divergences DH and KL disagree on which model is

closer to p?. This is illustrated in Figure 1.2. When both divergences are sensible, deciding

which one to use would require further considerations (e.g. see Jewson, Smith and Holmes,

2018). As explained in Section 1.1, the log-Bayes factor might be inappropriate in the

presence of vague priors. Looking back at case 1 for example, since log pM1(y1:T )→ −∞ when
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Case 1: N(1,1)

Case 2: N(0,5)

Case 3: N(4,3)

Case 4: N(0,1)

DH(p*,M2) = DH(p*,M1) KL(p*,M2) = KL(p*,M1)DH(p*,M2) = DH(p*,M1) KL(p*,M2) = KL(p*,M1)
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Figure 1.2. Phase plane of d(p?,M2)− d(p?,M1) as a function of (|µ?|, σ2
?), where d ∈ {DH,KL}.

The four cases from Section 1.2.3 are indicated as triangles. The lines (solid for DH, dashed for
KL) are the sets of (|µ?|, σ2

?) such that d(p?,M2) = d(p?,M1). The regions above (resp. below) the
lines satisfy d(p?,M2) > d(p?,M1) (resp. <), i.e. M1 (resp. M2) is closer to p?.

σ0 → +∞, one could always specify a σ0 large enough such that the log-Bayes factor would

wrongly pick M2. On the other hand, the choice of M1 by the H-factor remains unchanged

when σ0 increases. This robustness is further illustrated in Appendix B.1.

Finally, in case 4, the theoretical slopes are exactly 0, while the models are of equal

dimensions, hence no model prevails.

1.3 H-score for state-space models

The H-score raises additional computational challenges in the case of state-space models.

State-space models, also known as hidden Markov models, are a flexible and widely used

class of time series models (Cappé, Moulines and Rydén, 2005; Douc, Moulines and Stoffer,

2014), which describe the observations (Yt)t∈N∗ as conditionally independent given a latent
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Markov chain (Xt)t∈N∗ living in X ⊆ Rdx . A state-space model with parameter θ ∈ T ⊆ Rdθ

specifies an initial distribution µθ(dx1) of the first state X1, a Markov kernel fθ(dxt+1|xt)

for the transition of the latent process, a measurement distribution gθ(dyt|xt), and a prior

distribution p(dθ) on the parameter.

1.3.1 Computation of the H-score using SMC2

The conditional predictive distributions p(yt|y1:t−1, θ) appearing in (1.4) correspond to

integrals over the latent states, i.e. p(yt|y1:t−1, θ) =
∫
p(xt|y1:t−1, θ) gθ(yt|xt) dxt, which are in

general intractable. Interchanging differentiation and integration under suitable regularity

conditions yields the following results, which are similar to Fisher’s and Louis’ identities

(Proposition 10.1.6 in Cappé et al., 2005), except that differentiation here is with respect to

the observation instead of the parameter. We obtain for all θ ∈ T, all observed y1:T ∈ YT ,

all k ∈ J1, dyK, and all t ∈∈ J1, T K,

∂ log p(yt|y1:t−1, θ)
∂yt(k)

= Et
[
∂ log gθ(yt|Xt)

∂yt(k)

∣∣∣∣∣ θ
]
, (1.11)

∂2 log p(yt|y1:t−1, θ)
∂yt2(k)

+
(
∂ log p(yt|y1:t−1, θ)

∂yt(k)

)2

= Et

 ∂2 log gθ(yt|Xt)
∂yt2(k)

+
(
∂ log gθ(yt|Xt)

∂yt(k)

)2
∣∣∣∣∣∣ θ
 , (1.12)

where the conditional expectations Et are with respect to Xt ∼ p(dxt|y1:t, θ). Proofs of (1.11)

and (1.12) under regularity assumptions are presented in Appendix B.4.2. By applying (1.11)

and (1.12) to each term in (1.4) and using the tower property of conditional expectations,

the expression of HT (M) further simplifies to
T∑
t=1

dy∑
k=1

2Et

∂2 log gΘ(yt|Xt)
∂yt2(k)

+
(
∂ log gΘ(yt|Xt)

∂yt(k)

)2
− (Et

[
∂ log gΘ(yt|Xt)

∂yt(k)

])2
 (1.13)

where the expectations Et are with respect to the joint posterior distributions of (Θ, Xt)

given the observations y1:t, whose densities are given by p(θ, xt|y1:t) = p(θ|y1:t)p(xt|y1:t, θ).

For many state-space models, the log-derivatives of the measurement density gθ(y|x)

can be evaluated at any point (θ, y, x) ∈ T × Y × X. Assuming that we can simulate
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the transition kernel of the latent process, we can use SMC2 (Fulop and Li, 2013; Chopin

et al., 2013) to consistently estimate all the conditional expectations appearing in (1.13).

At each time t ∈∈ J1, T K, SMC2 produces a set of weighted particles targeting the joint

density p(θ, xt|y1:t), which can be used to update the H-score. Further implementation

guidelines are provided in Appendix A.2.

1.3.2 Consistency of the H-score for state-space models

We revisit the asymptotic consistency results of the H-score in the case of state-space

models. The observations are no longer assumed to be i.i.d. and we consider two candidate

models, M1 and M2. An additional difficulty in proving consistency of the H-score with

dependent observations lies in the approximation of HT (Mj) by a stationary analog, to which

ergodic theorems will apply. As in the i.i.d. setting, we only give results for univariate

continuous observations.

Theorem 2. Assume (Yt)t∈N∗ is ergodic and strongly stationary, so that we can artificially

extend its set of indices to negative integers and consider the two-sided process (Yt)t∈Z. Assume

M1 and M2 both satisfy the following conditions, where models are omitted from the notation

and probabilistic statements are P?-almost sure:

(a) For all t ∈ N∗ and y1:t ∈ Yt, θ 7→ p(yt|θ) p(θ|y1:t−1) is integrable on T.

(b) For all t ∈ N∗ and θ ∈ T, yt 7→ p(yt|θ) is twice differentiable on Y.

(c) For all t ∈ N∗, there exist integrable functions h1,t and h2,t such that, for all (y1:t, θ) ∈

Yt × T, |p(θ|y1:t−1) ∂p(yt|θ)/∂yt| ≤ h1,t(θ) and |p(θ|y1:t−1) ∂2p(yt|θ)/∂yt2| ≤ h2,t(θ).

(d) For all t ∈ N∗ and (y1:t, θ) ∈ Yt × T, xt 7→ p(xt|y1:t−1, θ) gθ(yt|xt) is integrable on X.

(e) For all t ∈ N∗ and (θ, xt) ∈ T× X, yt 7→ gθ(yt|xt) is twice differentiable on Y.
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(f) There exist integrable functions h3,t and h4,t such that, for all (y1:t, θ, xt) ∈ Yt × T×X,

|p(xt|y1:t−1, θ)∂gθ(yt|xt)/∂yt| ≤ h3,t(xt) and |p(xt|y1:t−1, θ)∂2gθ(yt|xt)/∂y2
t | ≤ h4,t(xt).

(g) For all t ∈ N∗, there exists θ? ∈ T such that, if Θt ∼ p(dθ|Y1:t) for all t ∈ N∗, then

Θt
D−−−−→

t→+∞ θ?.

(h) There exist a constant L > 0 and a neighborhood Uθ? of θ? such that, for all t ∈ N∗,

θ 7→ H (Yt, p(dyt|Y1:t−1, θ)) and θ 7→ ∂ log p(Yt|Y1:t−1, θ)/∂yt are L-Lipschitz functions.

(i) There exist α1 > 1 and α2 > 1 such that supt∈N∗ E [ |H (Yt, p(dyt|Y1:t−1,Θt)) |α1 |Y1:t ] <

+∞ and supt∈N∗ E
[
(∂ log p(Yt|Y1:t−1,Θt)/∂yt)2α2 |Y1:t

]
< +∞, where the conditional

expectations are with respect to the posterior distribution Θt ∼ p(dθ|Y1:t).

(j) There exists a dominating probability measure η on X such that the transition kernel

fθ?(dxt+1|xt) has density νθ?(xt+1|xt) = (dfθ?(·|xt)/dη)(xt+1) with respect to η.

(k) There exist positive constants σ− and σ+ such that, for all (xt, xt+1) ∈ X × X, the

transition density νθ?(xt+1|xt) satisfies 0 < σ− < νθ?(xt+1|xt) < σ+ < +∞.

(l) For all yt ∈ Y, the integral
∫
X gθ?(yt, xt) η(dxt) is bounded away from 0 and +∞.

(m) b = sup
x∈X
y∈Y

∣∣∣∣∣∂2 log gθ? (y|x)
∂y2 +

(
∂ log gθ? (y|x)

∂y

)2
∣∣∣∣∣ < +∞ and c = sup

x∈X
y∈Y

∣∣∣∣∂ log gθ? (y|x)
∂y

∣∣∣∣ < +∞.

(n) sup
x∈X
y∈Y

gθ?(y|x) < +∞ and E? [|log (
∫
X gθ?(Y1|x)νθ?(dx))|] < +∞.

(o) The conditional density y1 7→ p?(y1|Y−∞:0) of Y1 given (Yt)t≤0 is well-defined and twice

differentiable, and E?
[
|H (Y1, p?(dy1|Y−∞:0))|

]
< +∞.

If these conditions are met, we may define, for each j ∈ {1, 2}, the quantity

DH(p?,Mj) = E?
[
H
(
Y1, pj(dy1|Y−∞:0, θ

?
j )
)]
− E?

[
H (Y1, p?(dy1|Y−∞:0))

]
(1.14)
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where pj(y1|Y−∞:0, θ
?
j ) is the provably well-defined conditional density of Y1 given (Yt)t≤0 under

Mj and θ?j . Under these conditions, we have

1
T

(
HT (M2)−HT (M1)

) P?−a.s.−−−−→
T→+∞ DH(p?,M2)−DH(p?,M1) . (1.15)

If p?(y1|Y−∞:0) ∂ log p(y1|Y−∞:0, θ
?)/∂y1

P?−a.s.−−−−−→
|y1|→+∞

0, then we have DH(p?,Mj) ≥ 0, with

DH(p?,Mj) = 0 if and only if pj(y1|Y−∞:0, θ
?
j ) = p?(y1|Y−∞:0), P?-almost surely.

Conditions (a) to (c) ensure the validity of (1.5); (d) to (f) ensure the validity of (1.11)

and (1.12); (g) assumes the concentration of the posterior to a point mass; (h) to (i) yield

suitable convergence of posterior moments; (j) to (l) ensure the forgetting propriety of

the latent Markov chain and the H-score; (m) to (n) relate to the well-definiteness of the

conditional density pj(y1|Y−∞:0, θ
?
j ); finally, (o) and the last boundary condition ensure that

the H-score is strictly proper and well-defined for p?. Further discussion on these conditions

and detailed proofs are provided in Appendix B.5.

For state-space models, posterior concentration results have been derived in specific cases

(e.g. Lijoi, Prünster and Walker, 2007; De Gunst and Shcherbakova, 2008; Shalizi, 2009;

Gassiat and Rousseau, 2014; Douc et al., 2014; Douc, Olsson and Roueff, 2019, and references

therein). However, to the best of our knowledge, general results on posterior concentration

for misspecified state-space models have yet to be established. As a consequence, our proof

of Theorem 2 uses posterior concentration as a working assumption. Our numerical examples

suggest that concentration of posterior distributions can be observed in practice, even for

complex state-space models, as hinted by the posterior density plots shown in Section 3.7 of

Chapter 3. Further research on Bayesian asymptotics in state-space models might provide

more theoretical understanding of such phenomena.
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1.3.3 Illustration with Lévy-driven stochastic volatility models

In this simulation study we illustrate the consistency of the H-score in nonlinear, non-Gaussian

state-space models with continuous observations. A simpler example with linear Gaussian

state-space and ARMA models can be found in Appendix B.2. Here we consider Lévy-

driven stochastic volatility models (Barndorff-Nielsen and Shephard, 2001, 2002). These

models feature intractable transition kernels that can only be simulated, and describe the

joint evolution of the log-returns Yt and the instantaneous volatility Vt of a financial asset.

The former is modeled as a continuous time process driven by a Brownian motion, while

the latter is modeled as a Lévy process. Given a triplet of parameters (λ, ξ, ω), we can

generate random variables (Vt, Zt)t≥1 recursively as:

k ∼ Poisson (λξ2/ω2) ; C1:k
i.i.d.∼ Unif(t− 1, t); E1:k

i.i.d.∼ Exp (ξ/ω2) ;
Z0 ∼ Gamma (ξ2/ω2, ξ/ω2) ; Zt = e−λZt−1 +∑k

j=1 e
−λ(t−Cj)Ej ;

Vt = 1
λ

(
Zt−1 − Zt +∑k

j=1 Ej
)
.

 (1.16)

The first model (M1) describes the volatility as driven by a single factor, expressed in

terms of a finite rate Poisson process.

M1: (Vt, Zt) from (1.16) given (λ, ξ, ω); Xt = (Vt, Zt); Yt |Xt ∼ N (µ+ βVt, Vt) ; with

independent priors λ ∼ Exp(1); ξ, ω2 i.i.d.∼ Exp (1/5) ; µ, β
i.i.d.∼ N (0, 10).

The second model (M2) introduces an additional independent component to drive the

behavior of the volatility, leading to the multi-factor model below.

M2: (Vi,t , Zi,t) from (1.16) independently for i ∈ {1, 2} given (λi, ξwi, ωwi), with (w1,w2) =

(w, 1 − w); Xt = (V1,t , V2,t , Z1,t , Z2,t); Yt |Xt ∼ N (µ+ βVt, Vt) where Vt = V1,t +

V2,t ; with independent priors λ1 ∼ Exp(1); λ2 − λ1 ∼ Exp (1/2); w ∼ Unif(0, 1);

ξ, ω2 i.i.d.∼ Exp (1/5) ; µ, β
i.i.d.∼ N (0, 10).
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For model M1, we can prove that there exist values of the parameter θ = (λ, ξ, ω, µ, β) such

that E[ |∂ log gθ(y1|X1)/∂y1| ] = +∞, which prevents the use of (1.11)-(1.12) to estimate the

H-score of model M1. When (1.11)-(1.12) do not hold, we can directly estimate the partial

derivatives of ỹt 7→ p(ỹt|y1:t−1, θ) at the observed yt, by using approximate draws from the

conditional predictive distribution p(dyt|y1:t−1, θ). Approximate draws from p(dyt|y1:t−1, θ)

can be obtained from a run of SMC 2, as long as one can sample from the measurement

distribution gθ(dyt|xt). For a chosen bandwidth h > 0 (e.g. Hardle, Marron and Wand, 1990,

and references in Section 1.11 of Tsybakov, 2009) and a twice continuously differentiable

kernel K integrating to 1, e.g. a standard Gaussian kernel K(u) = (2π)−1/2 exp(−u2/2),

we can use n draws ỹ(1)
t , . . . , ỹ

(n)
t from p(dyt|y1:t−1, θ) to consistently estimate p(yt|y1:t−1, θ)

by the kernel density estimator p̂(yt|y1:t−1, θ) = (nh)−1∑n
i=1 K((yt − ỹ(i)

t )/h). This kernel

density estimator is twice differentiable with respect to yt, hence we can respectively

use ∂ p̂(yt|y1:t−1, θ)/∂yt(k) and ∂2 p̂(yt|y1:t−1, θ)/∂yt2(k) as consistent estimators of the partial

derivatives ∂p(yt|y1:t−1, θ)/∂yt(k) and ∂2p(yt|y1:t−1, θ)/∂yt2(k), as n → +∞ and h → 0 at an

appropriate rate (e.g. Bhattacharya, 1967).

We simulate T = 1000 observations from a single-factor Lévy-driven stochastic volatility

model with parameters λ = 0.01, ξ = 0.5, ω2 = 0.0625, µ = 0, and β = 0, following the

simulations of Barndorff-Nielsen and Shephard (2002). The H-factor of M1 against M2 is

computed for 15 replications of SMC2, using Nθ = 1024 particles in θ, and an adaptive number

of particles in x starting at Nx = 128. The kernel density estimation is performed with a

Gaussian kernel, using n = 1024 predictive draws and h = 0.1. The estimated log-Bayes factor

and H-factor of M1 against M2 are plotted in Figure 1.3. Here the models are nested and

well-specified, but their dimensions differ. We see that both criteria correctly select the smaller

model M1. As mentioned in Section 1.2.1, the estimated H-factor tends to have a larger

relative variance than the estimated log-Bayes factor, especially in the presence of extreme

observations (e.g. at times 454 and 656), and might thus call for a larger number of particles.
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Figure 1.3. Top panel: log-returns simulated from model M1 with parameters λ = 0.01, ξ = 0.5,
ω2 = 0.0625, µ = 0, and β = 0. Middle and bottom panels: estimated log-Bayes factor (log-BF)
and H-factor (HF) of M1 against M2, computed for 15 replications (thin solid lines), along with the
average scores across replications (thick solid lines). In each plot, the variability within each factor
is due to Monte Carlo error. See Section 1.3.3.

1.4 H-score for discrete observations

Motivated by an application in population dynamics (Section 1.4.2), we propose an extension

of the H-score to discrete observations. We assume that each observation y = (y(1), ..., y(dy))>

takes finite values (i.e. ‖y‖ < +∞) in some discrete space Y = Ja1, b1 K × ... × Jady , bdy K,

where Jak, bk K = [ak, bk] ∩ Z and ak, bk ∈ Z ∪ {−∞,+∞}, with ak < bk for all k ∈ J1, dyK.

For ease of exposition, assume for now that bk − ak ≥ 3 for all k ∈ J1, dyK.

1.4.1 Extension of the H-score to discrete observations

Let ek denote the canonical vector of Zdy that has all coordinates equal to 0 except for its

k-th coordinate that equals 1. For all y ∈ Y, all non-negative functions p on Y, and all
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k ∈ J1, dyK, we define ∂k p(y) = (p(y + ek) − p(y − ek))/2 and ∂k log p(y) = ∂k p(y)/p(y).

We define the score function

HD(y, p) =
dy∑
k=1
HD
k (y, p) (1.17)

where HD
k (y, p) = 2 ∂k (∂k log p(y)) +

(
∂k log p(y)

)2
if ak + 2 ≤ y(k) ≤ bk − 2. If ak or bk is

finite, we may define HD
k (y, p) at the relevant boundaries respectively as ∂k log p(y + ek),

∂k log p(y + ek) + (∂k log p(y))2, −∂k log p(y − ek) + (∂k log p(y))2, and −∂k log p(y − ek) for

y ∈ {ak, ak+1, bk−1, bk}. When the context is clear, we extend the definition of the H-score to

discrete observations by overloading its notation with HT (M) = ∑T
t=1HD(yt, pM (dyt|y1:t−1)).

The expression of HD can be regarded as a discrete analog of the Hyvärinen score H,

where the partial derivatives are replaced by central finite differences. The seemingly arbitrary

discretization turns out to yield a scoring rule that is actually proper, which can be proved

by using a characterization of proper scores for discrete observations as super-gradients of

concave entropy functions (McCarthy, 1956; Hendrickson and Buehler, 1971; Dawid et al.,

2012). The construction of HD and the proof of its propriety are detailed in Appendix B.3.

If bk = ak + 1 (e.g. for binary data) or bk = ak + 2, we could still define HD
k by ignoring

the cases y(k) = ak + 1, or y(k) = bk − 1, or both. Alternatively, we could use forward

differences. All these definitions lead to scores that meet the requirements of being insensitive

to prior vagueness, while being proper and local. Deciding which one to use is then a matter

of further considerations, left for future research.

1.4.2 Diffusion models for population dynamics of red kangaroos

We illustrate the H-score for discrete observations by comparing three nonlinear non-Gaussian

state-space models, describing the dynamics of a population of red kangaroos (Macropus

rufus) in New South Wales, Australia. These models were compared in Knape and de Valpine

(2012) using Bayes factors, although the authors acknowledged the undesirable sensitivity of
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their results to their choice of prior distributions. The data (Caughley, Shepherd and Short,

1987) is a time series of 41 bi-variate observations (Y1,t , Y2,t), formed by double transect

counts of red kangaroos, measured between 1973 and 1984 (see Figure 1.4). The small number

of observations calls for a criterion that is principled for finite samples, contrarily to e.g. the

Bayesian Information Criterion. The models are nested and will be referred to as M1, M2,

and M3, by decreasing order of complexity. The largest model (M1) is a logistic diffusion

model. Simpler versions include an exponential growth model (M2) and a random-walk model

(M3). In these models a latent population size (Xt) follows a stochastic differential equation

(see further motivation in Dennis and Costantino, 1988; Knape and de Valpine, 2012). Each

model is specified below, where (Wt)t≥0 denotes a standard Brownian motion.

M1: X1 ∼ LN(0, 5) ; dXt/Xt = (σ2/2 + r − bXt) dt+ σdWt ;

Y1,t , Y2,t |Xt , τ
i.i.d.∼ NB(Xt, Xt + τX2

t ) ;

with independent priors; σ, τ, b i.i.d.∼ Unif(0, 10), r ∼ Unif(−10, 10).

M2: same as M1 with b = 0; with independent priors σ, τ i.i.d.∼ Unif(0, 10), r ∼ Unif(−10, 10).

M3: same as M1 with b = 0 and r = 0; with independent priors σ, τ i.i.d.∼ Unif(0, 10).

We perform 5 runs of SMC2 to estimate the log-score and H-score of each model, with

an adaptive number Nx of latent particles. We use Nθ = 16384 particles in θ, and Nx = 32

initial particles in x. For model M1, we simulate the latent process using the Euler-Maruyama

method with discretization step ∆t = 0.001. The estimated log-scores and H-scores are shown

in Figure 1.4. For better readability, the log-score is rescaled by the number of observations.

Using the H-scores would lead to selecting modelM3, similarly to Knape and de Valpine (2012)

who use log-scores. Their conclusion was mitigated by the sensitivity of the evidence to the

choice of vague priors: for instance, changing the prior on r in model M2 to Unif(−100, 100)

effectively divides the evidence of M2 by a factor 10. On the other hand, we have found the
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impact of that change of prior on the H-score to be indistinguishable from the Monte Carlo

variation across runs. Using our R implementation and choices of algorithmic parameters,

one SMC or SMC2 replication took about a few minutes for each i.i.d. Normal models with

1000 observations (Section 1.2.3), about an hour for each kangaroo population model with 41

observations (Section 1.4.2), and about five hours for each stochastic volatility model with

1000 observations (Section 1.3.3). In all cases, the Monte Carlo error can be reduced by

increasing the number of particles, albeit at the expense of an increased computational cost.
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Figure 1.4. Top panel: double transect counts of red kangaroos. Middle and bottom panels:
estimated log-scores and H-scores of M1 (circles), M2 (triangles), andM3 (squares), for 5 replications
(thin solid lines), along with the average scores across replications (thick lines with shapes). The
log-scores are rescaled by the number of observations for better readability. The variability within
each model is due to Monte Carlo error. See Section 1.4.2.
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1.5 Discussion

The H-factor constitutes a competitive alternative to the Bayes factor. It is justified non-

asymptotically since it relies on assessing predictive performances using a proper local scoring

rule, and it is robust to the arbitrary vagueness of prior distributions. It can be applied to a

large variety of models — including nonlinear non-Gaussian state-space models — and it

can be estimated sequentially with SMC or SMC2, at a cost comparable to that of the Bayes

factor. However, the H-score puts additional smoothness restrictions on the models, e.g. the

twice differentiability of their predictive distributions with respect to the observations (see

Dawid and Musio, 2015, and its rejoinder). Thus there are models for which the Bayes factor

is applicable but not the H-factor. We have also discussed in Section 1.2.3 a case where

the two criteria disagree, even asymptotically, contrarily to e.g. partial and intrinsic Bayes

factors (Santis and Spezzaferri, 1999) that asymptotically agree with the Bayes factor. To

deal with vague or improper priors, other alternatives to the log-evidence include Bayesian

cross-validation criteria, e.g. ∑T
t=1 log p(yt|y−t), where y−t = {ys : 1 ≤ s ≤ T and s 6= t}.

Such criteria would be applicable under weaker smoothness assumptions on the predictive

densities, while still being robust to arbitrary vagueness of prior distributions. Efficient

computation of these criteria is challenging, and can be envisioned for i.i.d. models using

MCMC (Alqallaf and Gustafson, 2001), SMC (Bornn, Doucet and Gottardo, 2010), or

more recent work on unbiased MCMC (Jacob, O’Leary and Atchadé, 2017) applied to path

sampling (Rischard, Jacob and Pillai, 2018); the case of state-space models would be more

challenging, due to standard difficulties arising when splitting time series. Another approach

suggested in Kamary et al. (2014) is to cast model selection as a mixture estimation problem,

which also raises questions in the case of time series.

When using either the log-Bayes factor or the H-factor for model selection, decision theory

stipulates that the choice should be dictated by the sign of these differences of scores. In
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many practical settings, one only has access to SMC estimators of these differences, and a

crucial question is to determine whether the estimated sign is correct or wrongly flipped

due to the inherent Monte Carlo variation of the estimation method. Such uncertainty

quantification relates to the task of building confidence intervals for the differences of scores

and will be investigated in Chapter 2.

The sequential form of the H-score is problematic when observations are not naturally

ordered, leading to different values of the H-score for different orderings. This issue is

mitigated by the following facts: if the sample is large enough, any ordering of the data

would yield similar H-scores. For smaller samples, one could average the H-score over random

permutations of the data. In that case, quantifying and controlling the extra variability

induced by these permutations would deserve further investigation.

For continuous observations and non-nested parametric models satisfying strong regularity

assumptions, we have proved that the H-score leads to consistent model selection. The

asymptotic behavior of the H-factor is determined by how close the candidate models are from

the data-generating process, where closeness is quantified by the relative Fisher information

divergence associated with the H-score, in contrast to the Kullback–Leibler divergence

associated with the Bayes factor. Although our numerical experiments indicate that the

results might hold in more generality, our proofs rely on strong assumptions. For non-nested

models, these assumptions include suitable concentration of the posterior distribution as

the number of observations grow. When dealing with well-specified nested models, the

limits in (1.6) and (1.15) become meaningless, and higher order results are needed, e.g. the

asymptotic Normality of the posterior. To the best of our knowledge, such results on Bayesian

asymptotics are still elusive for general state-space models and will be the object of Chapter 3.
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2. Uncertainty quantification for model comparison

The work in this chapter has been done in collaboration with Pierre E. Jacob (Department of

Statistics, Harvard University). It corresponds to an upcoming paper at the time of writing.

2.1 Introduction

Given observations y1:T ∈ YT , the task of choosing between two models M1 and M2 can be

regarded as a decision theoretic problem, which consists in selecting the model minimizing

an appropriately chosen loss function (e.g. Bernardo and Smith, 2000; Robert, 2007). In

Chapter 1, we have discussed the relative benefits of using the log-evidence or the H-score

when choosing between Bayesian models, and we will keep focusing on these two criteria in

this chapter. For either criterion, deciding which model to select would be dictated by the sign

of the difference LBF1|2
T = (− log p2(y1:T ))− (− log p1(y1:T )) or HF1|2

T = HT (M2)−HT (M1)

between the models’ respective scores. However, this idealized decision rule cannot be used in

practice: as pointed out in the previous chapter, the exact scores are generally not available

and can only be estimated, e.g. via SMC methods, so that practical decisions are actually

based on estimated values ˆLBF1|2
T and ĤF1|2

T in place of the exact unknown differences. The

use of numerical approximations raises legitimate concerns about whether the estimated

signs of those differences are reliable or wrongly misled by the Monte Carlo error of SMC

samplers. This motivates the important task of quantifying the uncertainty pertaining to the

estimation of such model selection criteria. In the numerical illustrations from Sections 1.3.3

and 1.4.2 of Chapter 1, the uncertainty of the model selection procedure was heuristically

assessed by performing several independent replications of SMC samplers. A more rigorous

approach to quantify this uncertainty would consist in constructing confidence intervals

for the exact unknown differences in scores LBF1|2
T and HF1|2

T . The construction of such

valid confidence intervals will be at the heart of this chapter. Unless stated otherwise, all

the probabilistic statements in this chapter will be with respect to the auxiliary random
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2. Uncertainty quantification for model comparison

numbers generated during the course of SMC or MCMC algorithms, conditional on some

realized observations y1:T ∈ YT treated as fixed.

In Section 2.2, we start by proposing different methods to construct approximate confidence

intervals for log-evidences using SMC samplers. The first approach (Section 2.2.1) uses the

work of Lee and Whiteley (2018) to construct confidence intervals that are asymptotically valid

as the number of particles grows to infinity. Despite the existence of previous works on parallel

implementations of SMC (e.g. Vergé, Dubarry, Del Moral and Moulines, 2015; Murray et al.,

2016; Whiteley, Lee and Heine, 2016), such an asymptotic regime in the number of particles

is not appropriate when computational time is budgeted, nor does it allow to fully take

advantage of modern computing architectures often made of many independent processors.

This motivates another approach (Section 2.2.2) based on independent runs of SMC to

construct confidence intervals that are asymptotically valid as the number of processors

grows and therefore much more amenable to parallel computing. However, that approach

crucially relies on the non-trivial property that SMC estimators of evidences are unbiased,

making them not directly applicable to H-scores, whose SMC estimators are generally biased.

The more challenging construction of confidence intervals for H-scores will be studied in

Section 2.3. Using the recent work of Jacob et al. (2017) on debiasing MCMC estimators, we

present one practical construction (Section 2.3.2) that stems from the use of SMC samplers

as proposal distributions within coupled particle independent Metropolis-Hastings algorithms

(Middleton, Deligiannidis, Doucet and Jacob, 2019). The proposed method is pleasingly

parallel, and produces confidence intervals whose validity is asymptotic in the number of

independent processors. We conclude by discussing possible avenues of future research in

Section 2.4. Throughout this chapter, we illustrate the different constructions by using the

diffusion models M2 and M3 from Section 1.4.2 of Chapter 1 as a recurring testbed.
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2.2 Confidence intervals for the log-evidence

The work of Lee and Whiteley (2018) allows us to estimate the variance of SMC-based

estimators. These approximate variances can be obtained from the same run of SMC used to

produce the estimators in the first place, and they allow the construction of approximate

confidence intervals that are asymptotically valid as the number of particles grows to infinity,

as explored in Section 2.2.1. However, such an asymptotic regime in the number of particles

is not appropriate when computational time is budgeted, and is restricted by the limited

amount of computational resources on any given processor. In Section 2.2.2, we present an

alternative method to construct approximate confidence intervals for the log-evidence by

performing independent runs of SMC on different processors. This alternative method yields

confidence intervals that are asymptotically valid as the number of processors increases, and

is therefore more amenable to parallel computing and budget constraints.

2.2.1 Asymptotic validity in the number of particles

Consider a generic sequence of T probability distributions of interest, identified with their

densities (ηt)t∈J1,T K on some space Ξ ⊆ Rd. Let (γt)t∈J1,T K denote the corresponding unnormal-

ized densities, so that for all (t, ξ) ∈ J1, T K×Ξ, we have ηt(ξ) = γt(ξ)/Zt with Zt =
∫

Ξ γt(ξ)dξ

known as the normalizing constant of γt. It is customary to introduce an initial distribution

η0 that is easy to sample from, with γ0 = η0 and Z0 = 1. By alternating between resampling,

moving, and re-weighting operations, an SMC algorithm (see Appendix A.1 and references

therein) sequentially produces T systems of N weighted particles (w(i)
t , ξ

(i)
t )(t,i)∈J1,T K×J1,NK

such that, for every horizon t ∈ J1, T K, the corresponding empirical distributions

γ̂t,N =
N∑
i=1

w
(i)
t δξ(i)

t
and η̂t,N =

N∑
i=1

w
(i)
t∑N

j=1 w
(j)
t

δ
ξ
(i)
t
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2. Uncertainty quantification for model comparison

respectively approximate the target distributions γt and ηt. One can then naturally use

γ̂t,N(ϕ) =
N∑
i=1

w
(i)
t ϕ(ξ(i)

t ) and η̂t,N(ϕ) =
N∑
i=1

w
(i)
t∑N

j=1 w
(j)
t

ϕ(ξ(i)
t ) (2.1)

as respective estimators of the expectations

γt(ϕ) =
∫

Ξ
ϕ(ξ)γt(ξ)dξ and ηt(ϕ) =

∫
Ξ
ϕ(ξ)ηt(ξ)dξ (2.2)

for any suitably integrable function ϕ on Ξ. It follows that the normalizing constants Zt = γt(1)

can be estimated with Ẑt,N = γ̂t,N (1) for all horizons t ∈ J1, T K. Of particular interest to us is

the Bayesian setting where γt(θ) = p(θ)p(y1:t|θ), for a given prior density θ 7→ p(θ), a sequence

of observations y1:T ∈ YT ⊆ (Rdy)T , and a likelihood function θ 7→ p(y1:t|θ), in which case

(ηt)t∈J1,T K corresponds to the sequence of successive posterior densities ηt(θ) = p(θ|y1:t) for all

t ∈ J1, T K, and the normalizing constant Zt = p(y1:t) corresponds to the sought-after evidence.

The behavior as N → +∞ of the SMC estimators γ̂t,N(ϕ) and η̂t,N(ϕ) in (2.1) has

been extensively studied, notably by Del Moral (2004, Section 9.4), Chopin et al. (2004,

Theorem 1), and Del Moral et al. (2006, Proposition 2). Although the latter is generally

biased for ηt(ϕ) while the former unbiasedly estimates γt(ϕ), both estimators γ̂t,N(ϕ) and

η̂t,N(ϕ) are typically consistent and satisfy a version of the central limit theorem centered

at their exact counterparts γt(ϕ) and ηt(ϕ). In particular, under appropriate regularity

assumptions, the SMC estimator of the evidence satisfies

√
N

(
Ẑt,N
Zt
− 1

)
D−−−−→

N→+∞ N

0,
σ2

SMC,Ẑt
Z2
t

 (2.3)

for some finite relative variance σ2
SMC,Ẑt

∈ (0,+∞). Since (∂ log(u)/∂u)2 = (1/u)2 = 1 at

u = 1, applying the delta method to (2.3) leads to

√
N
(
log Ẑt,N − logZt

) D−−−−→
N→+∞ N

0,
σ2

SMC,Ẑt
Z2
t

 . (2.4)
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2. Uncertainty quantification for model comparison

The recent work of Lee and Whiteley (2018) provides a novel way to consistently estimate

the asymptotic relative variance σ2
SMC,Ẑt

/Z2
t in (2.4). Although their initial motivation was

to estimate the variance of γ̂t,N (ϕ) and η̂t,N (ϕ) in the context of particle filters (see Appendix

A.2.1 and references therein), their method readily applies to more general SMC samplers.

From a non-adaptive SMC run with deliberate rejuvenation (i.e. step (iv) of Algorithm 1 in

Appendix A.1.1) after each re-weighting step, we can construct the estimator

V̂t,N = 1−
(

N

N − 1

)t+1
+
(

N

N − 1

)t+1 1
N2

N∑
i=1

 N∑
j=1

1{Ejt=i}

2

(2.5)

where Ej
t ∈ J1, NK denotes the index of the ancestral particle from horizon 0 whose descendants

at horizon t includes particle ξjt . In other words, starting from the leaf node ξjt at horizon t

and tracing back the respective ancestors all the way up the lineage would lead to particle

ξ
Ejt
0 as the root. Under mild assumptions (Lee and Whiteley, 2018, Theorem 1), the estimator

V̂t,N satisfies NV̂t,N −−−−→N→+∞ σ2
SMC,Ẑt

/Z2
t in probability, so that

V̂
−1/2
t,N

(
log Ẑt,N − logZt

) D−−−−→
N→+∞ N (0, 1) (2.6)

and a possible 100(1 − α)%-confidence interval for logZt is given by
[

log Ẑt,N +− q
N (0,1)
1−α/2

√
V̂t,N

]
(2.7)

where qN (0,1)
1−α/2 denotes the (1− α/2)-quantile of a standard Normal distribution. Thanks to

(2.6), the confidence interval in (2.7) is asymptotically valid as N → +∞. When comparing

two models M2 and M3, one would run two independent SMC samplers — one for each

model — to obtain log-evidence estimators log ẐM2
t,N and log ẐM3

t,N along with their variance

estimators V̂ M2
t,N and V̂ M3

t,N . By independence, variances can be added up and we may combine

the respective confidence intervals from (2.7) to obtain[ (
log ẐM2

t,N − log ẐM3
t,N

)
+− q

N (0,1)
1−α/2

√
V̂
M2
t,N + V̂ M3

t,N

]
(2.8)
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as an asymptotically valid 100(1−α)%-confidence interval for the difference of log-evidences i.e.

the log-Bayes factor LBF2|3
t = log p(y1:t|M2)− log p(y1:t|M3) of model M2 against model M3,

for all t ∈ J1, T K. For log-evidences of state-space models, the above method can be directly

applied — provided the transition kernel can be sampled from and the observation densities

can be evaluated — by using SMC2 samplers (Chopin et al., 2013) and regarding them as

particular instances of exact SMC methods on extended spaces, as reviewed in Appendix

A.2. For SMC2 samplers producing Nθ particles (θ(i)
t )(t,i)∈J1,T K×J1,NθK, each carrying a particle

filter made of Nx particles, the asymptotic validity of (2.7) holds as Nθ → +∞ for any fixed

Nx ∈ N∗, albeit with different efficiency considerations as Nx varies. The construction of

confidence intervals of the form (2.7) or (2.8) is illustrated on diffusion models in Section 2.2.3.

A few caveats need to be issued here: although the estimator V̂t,N in (2.5) can be

computed for any implementation of SMC, its consistency in (2.6) has only been proved

for SMC algorithms with non-random weights and a deterministic rejuvenation schedule

based on multinomial resampling (Lee and Whiteley, 2018, Theorem 1). The extension of

V̂t,N ’s theoretical guarantees to SMC algorithms with adaptive resampling schedules (e.g. the

iterated batch importance sampling of Chopin, 2002, and Algorithm 2 in Appendix A.1.2),

more advanced resampling schemes (e.g. the SSP resampling of Gerber et al., 2017), or

random weights (e.g. produced by particle filters in the case of the SMC2 of Chopin et al.,

2013) would be an interesting avenue for future research.

The main advantage of the variance estimator V̂t,N is that it can be computed on the fly

from the same run of SMC used to produce the log-evidence estimator log Ẑt, at virtually no

additional computational or memory cost (e.g. no need to store any lineages), as explained

in Algorithm 2 and Lemma 6 from the supplementary material of Lee and Whiteley (2018).

We only use a particular version of their variance estimator, whose original formulation

applies to SMC estimators of the form γ̂t,N(ϕ) and η̂t,N(ϕ) for general test functions ϕ,

while also allowing for time-varying number of particles (Nt)t∈J0,T K ∈ (N∗)T+1. Despite
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the generality of their formulation, extending the present method to the construction of

confidence intervals for H-scores is not straightforward: the main difficulty comes from

the fact that H-scores are not posterior expectations of the form γt(ϕ) nor ηt(ϕ), and can

only be expressed as ∑t
s=1 h(ηs(ϕ1), ..., ηs(ϕJ)) for some non-linear function h : RJ → R

of J different test functions (ϕj)j∈J1,JK. This will call for a radically different approach,

which will be investigated in Section 2.3.

Another limitation of a confidence interval based on (2.7) is that its validity is asymptotic

in the number of particles N . Getting more accurate estimates can only be achieved by

increasing the number of particles, and along with it the computational and memory costs of

the underlying SMC algorithm. To the best of our knowledge, increasing N to N ′ > N would

require re-running an SMC with N ′ particles from scratch, with no direct way of re-using the

former run with N particles to refine the results. Besides, the extent to which one can increase

N on a given processor is limited by the amount of available memory, and vast increases in

computation time are not sustainable in contexts where one needs to refine estimators within

a budgeted time window. Parallelizing the SMC algorithm (e.g. Vergé et al., 2015; Murray

et al., 2016; Whiteley et al., 2016) would alleviate the computation time, but it would not

solve the fundamental issues of having undesirable asymptotics in N . This motivates the

need for a different asymptotic regime, based on the number of independent processors, which

would fully take advantage of modern and increasingly parallel computing architectures.

2.2.2 Asymptotic validity in the number of processors

The SMC estimator Ẑt,N of the evidence has the key property of being unbiased, i.e. it satisfies

E[Ẑt,N | y1:t] = Zt = p(y1:t) for all t ∈ J1, T K and — more remarkably — all finite N ∈ N∗,

where the expectation is with respect to the random variables generated in the course of

running the SMC algorithm. As a consequence, we could perform R independent runs of

SMC with N particles on R processors, entirely in parallel, and produce R independent and
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identically distributed (i.i.d.) estimators (Ẑ(r)
t,N )r∈J1,RK of the evidence. From these estimators,

we can form the sample average Z̄t,N,R = R−1∑R
r=1 Ẑ

(r)
t,N . Under the mild assumption (see

e.g. Del Moral, 2004; Del Moral et al., 2006) that the estimator Ẑt,N has a finite variance

σ2
Ẑt,N
∈ (0,+∞), the standard central limit theorem for i.i.d. variables ensures that

√√√√ R

σ2
Ẑt,N

(
Z̄t,N,R − Zt

) D−−−−→
R→+∞ N (0, 1) (2.9)

for all t ∈ J1, T K and all finite N ∈ N∗, where the centering at Zt crucially relies on the

unbiasedness of Ẑt,N . Applying logarithms and using the delta method on (2.9) yields√√√√√R Z2
t

σ2
Ẑt,N

(
log Z̄t,N,R − logZt

) D−−−−→
R→+∞ N (0, 1) (2.10)

for all t ∈ J1, T K and all finite N ∈ N∗. By respectively using the sample mean Z̄t,N,R

and the sample variance σ̂2
Ẑt,N ,R

= R−1∑R
r=1(Ẑ(r)

t,N − Z̄t,N,R)2 to consistently estimate the

unknown mean Zt and the unknown variance σ2
Ẑt,N

as R → +∞, we can turn (2.10) into

a confidence interval for logZt defined as log Z̄t,N,R +− q
N (0,1)
1−α/2

√√√√√ 1
R

σ̂2
Ẑt,N ,R

Z̄2
t,N,R


which further simplifies to log Z̄t,N,R +− q

N (0,1)
1−α/2

√√√√√ 1
R2

R∑
r=1

 Ẑ
(r)
t,N

Z̄t,N,R
− 1

2
 (2.11)

whose validity is asymptotic as R→ +∞, for any finite value of N ∈ N∗. Possible numerical

underflow due to the Ẑ(r)
t,N ’s can be avoided by using a traditional log-sum-exp trick with

log Z̄t,N,R = log
(

1
R

R∑
r=1

exp
(
log Ẑ(r)

t,N − log Ẑ(∗)
t,N

))
+ log Ẑ(∗)

t,N

Ẑ
(r)
t,N

Z̄t,N,R
=

exp
(
log Ẑ(r)

t,N − log Ẑ(∗)
t,N

)
R−1∑R

j=1 exp
(
log Ẑ(j)

t,N − log Ẑ(∗)
t,N

)
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where log Ẑ(∗)
t,N = max{log Ẑ(r)

t,N : r ∈ J1, RK}.

Going from (2.11) to asymptotic confidence intervals for the difference of log-evidences

between two models can be done similarly to (2.8), i.e. by running independent estimations

for each model and leveraging the independence to add up the variances, leading to
 (log Z̄M2

t,N,R − log Z̄M3
t,N,R

)
+− q

N (0,1)
1−α/2

√√√√√√ 1
R2

R∑
r=1


ẐM2 (r)

t,N

Z̄M2
t,N,R

− 1
2

+
ẐM3 (r)

t,N

Z̄M3
t,N,R

− 1
2


 (2.12)

as an approximate 100(1− α)%-confidence interval for LBF2|3
t , that is valid at all horizons

t ∈ J1, T K, for any finite value of N ∈ N∗ and asymptotically as R → +∞. Numerical

illustrations of confidence intervals based on (2.11) and (2.12) are provided in Section 2.2.3.

It is worth mentioning that unlike (2.7), whose theoretical understanding is currently

limited to SMC samplers that use multinomial resampling, the construction in (2.11) allows

for the use of other resampling schemes (e.g. Liu and Chen, 1998; Gerber et al., 2017) within

the underlying SMC samplers, as long as the resulting estimators of the evidence remain

unbiased. This can be ensured by imposing sufficient conditions on the resampling schemes,

such as Assumption 2 in Andrieu et al. (2010, equations (23) and (24)). We emphasize once

more how much the validity of this approach relies on the unbiased property of Ẑt,N to justify

averaging over independent replications in (2.9). As a word of caution, this precludes the use

of adaptive versions of SMC, whose evidence estimators are generally no longer unbiased,

although this can be mitigated by performing a preliminary run of adaptive SMC — to tune

the algorithmic parameters. The reliance on unbiasedness of SMC estimators also prevents any

generalization of the current approach to the construction of confidence intervals for H-scores :

although SMC samplers can be used to produce consistent estimators of H-scores, as explained

in Sections 1.2.1 and 1.3.1 of Chapter 1, these estimators are typically biased. The more

involved construction of confidence intervals for H-scores will be investigated in Section 2.3.
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2.2.3 Numerical illustration with diffusion models

We will use the population dynamics models introduced in Section 1.4.2 of Chapter 1 as a

recurring example to illustrate our different methods of constructing confidence intervals.

Unless stated otherwise, we will use 95% as a confidence level by default. We restrict our

attention to the models M2 and M3 that appeared to be the most similar, and thus the

hardest to tell apart. Recall that the data consists of T = 41 bi-variate vectors of counts

(Y1,t , Y2,t)t∈J1,T K ∈ (N× N)T (Caughley et al., 1987; Knape and de Valpine, 2012), as shown

in Figure 1.4 of Chapter 1, and the models are defined as

M2: X1 ∼ LN(0, 5) ; dXt/Xt = (σ2/2 + r) dt+ σdWt ;

Y1,t , Y2,t |Xt , τ
i.i.d.∼ NB(Xt, Xt + τX2

t ) ;

with independent priors; σ, τ i.i.d.∼ Unif(0, 10), r ∼ Unif(−10, 10).

M3: X1 ∼ LN(0, 5) ; dXt/Xt = (σ2/2) dt+ σdWt ;

Y1,t , Y2,t |Xt , τ
i.i.d.∼ NB(Xt, Xt + τX2

t ) ;

with independent priors; σ, τ i.i.d.∼ Unif(0, 10).

In Figure 2.1, we demonstrate the construction of approximate confidence intervals for the

log-scores (i.e. negatives of log-evidences) of models M2 and M3, using the methods (2.7) and

(2.11) respectively presented in Sections 2.2.1 and 2.2.2. The intervals based on (2.7) are

obtained from one run of non-adaptive SMC2 for each model, using Nθ = 1024 and Nx = 32

particles, with forced rejuvenation at every step and a multinomial resampling scheme. The

intervals based on (2.11) are obtained from R = 100 independent runs of non-adaptive SMC2

for each model, using Nθ = 1024 and Nx = 32 particles, with multinomial resampling and a

rejuvenation schedule learned beforehand from a preliminary adaptive run. The intervals (2.7)

and (2.11) are plotted for each model and each horizon t ∈ J1, 41K. For better readability,

the log-scores and their confidence intervals are rescaled by the number of observations.
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Figure 2.1. Approximate 95%-confidence intervals (vertical segments) for the log-scores of models
M2 (yellow triangles) and M3 (blue squares) scaled by the number of observations. Top panel: using
equation (2.7) with variance estimators from single runs of SMC 2 with Nθ = 1024 and Nx = 32.
Bottom panel: using equation (2.11) with R = 100 independent runs of SMC 2 with Nθ = 1024 and
Nx = 32. See Section 2.2.3.

The resulting approximate confidence intervals for the log-Bayes factor of model M2

against model M3 are shown in Figure 2.2. We see that they stop containing 0 after a few

observations, and quickly drift further away to the negative side. Conditional on the observed

data, Figure 2.2 would suggest a preference for model M3, thus corroborating the initial

hunch ventured in Section 1.4.2, but with stronger theoretical grounds this time around.

As with classical hypothesis testing, care is advised when interpreting the results of these

confidence intervals. The confidence intervals (2.8) and (2.12) asymptotically have the correct
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coverage (1 − α), either when N → +∞ or R → +∞ respectively, in the following sense:

conditional on the realized observations y1:T , these random intervals at horizon t ∈ J1, T K

contain the exact log-Bayes factor LBF2|3
t with probability (1−α), where the probabilities are

taken with respect to the joint sampling distribution of all the random variables generated

during the run of the corresponding SMC algorithms.
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Figure 2.2. Approximate 95%-confidence intervals for the log-Bayes factor of models M2 against
M3 (vertical segments centered at the dots). Top panel: using equation (2.8) with variance estimators
from single runs of SMC 2 with Nθ = 1024 and Nx = 32. Bottom panel: using equation (2.12) with
R = 100 independent runs of SMC 2 with Nθ = 1024 and Nx = 32. See Section 2.2.3.
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2.3 Confidence intervals for the H-score

As previously mentioned, none of the methods presented so far is directly applicable to the

construction of confidence intervals for H-scores. We further investigate the matter here,

starting in Section 2.3.1 by expressing H-scores as explicit functions of posterior expectations.

The work of Jacob et al. (2017) on unbiased MCMC methods provides a way of using R

independent processors to produce estimators that satisfy a central limit theorem centered

at those exact posterior expectations, with asymptotics in the number of processors. By

a suitable application of the delta method, these estimators can be further combined into

estimated H-scores, whose asymptotic distribution as R→ +∞ will also be Normal, centered

precisely at the exact H-scores. This procedure enables the construction of approximate

confidence intervals for H-scores, whose validity is asymptotic in the number of independent

processors, as desired. Different variants of unbiased MCMC methods will then lead to possibly

different constructions. In Section 2.3.2, we propose a construction based on coupled particle

independent Metropolis-Hastings (PIMH) algorithms (Middleton et al., 2019) with SMC

samplers as proposal distributions. In Section 2.3.3, we provide some numerical illustrations

that will raise legitimate concerns about the tuning of the aforementioned algorithm. We

discuss these concerns more thoroughly in Section 2.3.4.

2.3.1 Combining unbiased MCMC and delta methods

After reviewing how unbiased MCMC can be used to derive central limit theorems for

estimators of posterior expectations (Section 2.3.1.1), we explain how the delta method can

enable the construction of confidence intervals for H-scores. This will rely on our ability

to express the H-score as a function of posterior expectations, both in settings where the

observations are continuous (Section 2.3.1.2) and discrete (Section 2.3.1.3).
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2. Uncertainty quantification for model comparison

2.3.1.1 Unbiased MCMC for posterior expectations

Given a target probability distribution π on some space V ⊆ RdV and a test function

ϕ : V→ R of interest, unbiased MCMC methods (Jacob et al., 2017) are a particular class of

MCMC algorithms (e.g. Robert and Casella, 1999; Liu, 2008; Brooks, Gelman, Jones and

Meng, 2011; Green, Łatuszyński, Pereyra and Robert, 2015) that produce a pair of Markov

chains V = (V (n))n∈N and W = (W (n))n∈N in VN having the following properties:

• The two processes (V (n))n∈N and (W (n))n∈N have the same law: each Markov chain

marginally starts from an initial distribution π0, evolves according to a transition

kernel P , and converges to π as its invariant distribution. By letting π(ϕ) denote the

expectation E[ϕ(Ṽ)] under Ṽ ∼ π, we have E[ϕ(V (n))] −−−−→
n→+∞ π(ϕ).

• The joint transition kernel of (V (n),W (n))n∈N uses a coupling (i.e. a constrained joint

distribution) that is designed to make the two chains almost surely meet, i.e. the

stopping time defined by τ = min{n ∈ N∗ : V (n) =W (n−1)} is almost surely finite and

satisfies E[τ ] < +∞. We refer to τ as the meeting time of the two chains.

• The two chains stay together after meeting, so that V (n) =W (n−1) for all n ≥ τ .

Different settings, couplings, and technical conditions can be considered, leading to different

variants and theoretical guarantees (Jacob et al., 2017; Middleton, Deligiannidis, Doucet

and Jacob, 2018; Heng and Jacob, 2019; Middleton et al., 2019). We focus on the setting

where π is the posterior distribution of a parameter, conditional on some fixed observations,

and our main interest in these unbiased MCMC algorithms lies in their unique ability

to produce a bias-corrected estimator

Φϕ
k:m(V ,W) =

[
1

m− k + 1

m∑
`=k

ϕ(V (`))
]

+
[
τ−1∑
`=k

min
(

1, `− k + 1
m− k + 1

)(
ϕ(V (`+1))− ϕ(W (`))

)]
(2.13)

43



2. Uncertainty quantification for model comparison

which, for all (k,m) ∈ N2 with k ≤ m, has the particularity — under the regularity

assumptions of Proposition 3.1 in Jacob et al. (2017) or Theorem 1 in Middleton et al.

(2018) — of being an unbiased estimator of π(ϕ), with finite expected computation time, and

finite variance denoted by σ2
Φϕ
k:m

. These remarkable properties imply that, by performing R

independent runs of unbiased MCMC on R processors in parallel to produce i.i.d. estimators

(Φϕ,(r)
k:m )r∈J1,RK from (2.13), we can form the average Φ̄ϕ

k:m,R = R−1∑R
r=1 Φϕ,(r)

k:m and invoke the

standard law of large numbers along with the central limit theorem for i.i.d. variables to claim

Φ̄ϕ
k:m,R

P−a.s.−−−−→
R→+∞ π(ϕ) (2.14)

√
R
(
Φ̄ϕ
k:m,R − π(ϕ)

) D−−−−→
R→+∞ N

(
0, σ2

Φϕ
k:m

)
(2.15)

so that for any continuously differentiable function h : V→ R with derivative h′ satisfying

h′(π(ϕ)) 6= 0, applying the delta method to (2.15) leads to

√
R
(
h(Φ̄ϕ

k:m,R)− h(π(ϕ))
) D−−−−→

R→+∞ N
(
0, [h′ (π(ϕ))]2 σ2

Φϕ
k:m

)
. (2.16)

By respectively using the sample variance σ̂2
Φϕ
k:m,R

= R−1∑R
r=1(Φϕ,(r)

k:m − Φ̄ϕ
k:m,R)2 and the

plug-in estimate h′(Φ̄ϕ
k:m,R) as consistent estimators of the unknown σ2

Φϕ
k:m

and h′(π(ϕ)) — the

latter being a consequence of (2.14) and the continuous mapping theorem — we can construct h
(
Φ̄ϕ
k:m,R

)
+− q

N (0,1)
1−α/2

√
1
R

(
h′(Φ̄k:m,R)

)2
σ̂2

Φϕ
k:m,R


as an approximate 100(1− α)%-confidence interval for h(π(ϕ)) that is asymptotically valid

as R → +∞, thanks to (2.16) and Slutsky’s theorem. Although valid for all (k,m) ∈ N2

with k ≤ m, practical and efficiency considerations should guide the choice of (k,m),

as will be discussed in Section 2.3.4.3.

The previous approach directly generalizes to a collection of J test functions ϕ = (ϕj)j∈J1,JK

and a multivariate transformation h : VJ → R as follows. Each processor r ∈ J1, R K can
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2. Uncertainty quantification for model comparison

perform one single run of unbiased MCMC to obtain a pair of coupled chains (V (r)
n ,W (r)

n )n∈N ,

independently of all the other processors. This pair of chains is then used to compute the

bias-corrected estimators Φϕj ,(r)
k:m from (2.13) for each test function ϕj , thus forming a random

vector Φϕ,(r)
k:m = (Φϕj ,(r)

k:m )j∈J1,JK ∈ RJ . Under similar regularity assumptions as before, the

component-wise expectation of Φϕ,(r)
k:m is equal to the vector π(ϕ) = (π(ϕj))j∈J1,JK, and its

covariance matrix Σϕ
k:m = (Cov(Φϕi,(r)

k:m ,Φϕj ,(r)
k:m ))(i,j)∈J1,JK2 ∈ RJ×J is well-defined. By forming

the sample average vector across R independent processors Φ̄ϕ
k:m,R = R−1∑R

r=1 Φϕ,(r)
k:m and

invoking the multivariate versions of the law of large numbers, central limit theorem, and delta

method assuming ∇h(π(ϕ)) 6= 0, we obtain multivariate analogs of (2.14) to (2.16) given by

Φ̄ϕ
k:m,R

P−a.s.−−−−→
R→+∞ π(ϕ) (2.17)

√
R
(
Φ̄ϕ
k:m,R − π(ϕ)

) D−−−−→
R→+∞ N (0,Σϕ

k:m) (2.18)

√
R
(
h(Φ̄ϕ

k:m,R)− h(π(ϕ))
) D−−−−→

R→+∞ N
(
0,∇h (π(ϕ))>Σϕ

k:m∇h (π(ϕ))
)

(2.19)

which finally leads to the construction of h
(
Φ̄ϕ
k:m,R

)
+− q

N (0,1)
1−α/2

√
1
R
∇h

(
Φ̄ϕ
k:m,R

)>
Σ̂ϕ
k:m,R∇h

(
Φ̄ϕ
k:m,R

)  (2.20)

where Σ̂ϕ
k:m,R = R−1∑R

r=1(Φϕ,(r)
k:m − Φ̄ϕ

k:m,R)(Φϕ,(r)
k:m − Φ̄ϕ

k:m,R)> is the sample variance of the

realized vectors (Φϕ,(r)
k:m )r∈J1,RK across the R independent processors. The interval in (2.20)

is an approximate 100(1− α)%-confidence interval for h(π(ϕ)), whose asymptotic validity

is in the number of independent processors R → +∞.

By thinking of π as a posterior distribution, the derivation of (2.20) offers a convenient

and inherently parallelizable way to construct confidence intervals for virtually any smooth

functions of posterior expectations. This will be particularly relevant to us since, as explained

in the next sections, H-scores can be explicitly expressed as continuously differentiable

functions of vectors of posterior expectations.
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2. Uncertainty quantification for model comparison

2.3.1.2 H-scores as functions of posterior expectations: continuous case

For continuous observations y1:T ∈ YT ⊆ (Rdy)T , equations (1.4) and (1.13) from Chapter 1

allow us to express the H-score of a model M at any intermediate horizon s ∈ J1, T K as

Hs(M) =
s∑
t=1

dy∑
d=1

(
2Et,d,1 − (Et,d,2)2

)
(2.21)

where Et,d,1 and Et,d,2 are posterior expectations with respect to Θ ∼ p(dθ|y1:t) defined as

Et,d,1 = E

 ∂2 log p(yt|y1:t−1,Θ)
∂yt2(d)

+
(
∂ log p(yt|y1:t−1,Θ)

∂yt(d)

)2
∣∣∣∣∣∣ y1:t

 ,
Et,d,2 = E

[
∂ log p(yt|y1:t−1,Θ)

∂yt(d)

∣∣∣∣∣ y1:t

]
,

which, in the context of state-space models, further simplify to posterior expectations with

respect to (Θ, Xt) ∼ p(dθ|y1:t)p(dxt|y1:t, θ) given by

Et,d,1 = E

 ∂2 log gΘ(yt|Xt)
∂yt2(d)

+
(
∂ log gΘ(yt|Xt),Θ)

∂yt(k)

)2
∣∣∣∣∣∣ y1:t

 ,
Et,d,2 = E

[
∂ log gΘ(yt|Xt),Θ)

∂yt(d)

∣∣∣∣∣ y1:t

]
,

under mild regularity conditions (see Assumption A11 in Appendix B.4). In other words,

the H-score at horizon s ∈ J1, T K can be written as

Hs(M) = hs
(
(Et,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K

)
(2.22)

where (Et,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K is the vector enumerating the Et,d,j’s in the lexicographic

order of J1, sK× J1, dyK× J1, 2K induced by the natural order on N, and hs : Rs×dy×2 → R is a

continuously differentiable function whose gradient ∇hs can be analytically computed. The

functional forms of hs and ∇hs are detailed in Appendix C.1.1. Thanks to (2.22), the construc-

tion of confidence intervals from (2.20) will directly apply as soon as we can produce R unbiased

estimators ((Ê(r)
t,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K)r∈J1,RK for (Et,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K from (2.13).
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2.3.1.3 H-scores as functions of posterior expectations: discrete case

Let ed denote the canonical vector of Zdy that has all coordinates equal to 0 except for its

d-th coordinate that equals 1. From Section 1.4.1 of Chapter 1, the general form of the

H-score at horizon s ∈ J1, T K in the case of discrete observations is given — except at possible

boundaries if Y is bounded, in which case some of the undefined terms are dropped and

the formula simplifies even further — by the expression

HT (M) =
T∑
t=1

dy∑
d=1

(
2 ∂d

(
∂d log p(yt | y1:t−1)

)
+ (∂d log p(yt | y1:t−1)) 2

)

=
T∑
t=1

dy∑
d=1

pt,d,2 − pt,d,0
2 pt,d,1

− pt,d,0 − pt,d,−2

2 pt,d,−1
+
(
pt,d,1 − pt,d,−1

2 pt,d,0

)2
 (2.23)

where the pt,d,j’s are posterior expectations with respect to Θ ∼ p(dθ|y1:t−1) defined as

pt,d,j = p (yt + jed | y1:t−1) = E
[
p(yt + jed | y1:t−1,Θ)

∣∣∣ y1:t−1
]

for all (t, d, j) ∈ J1, T K × J1, dyK × J−2, 2K. For state-space models, this simplifies to

pt,d,j = E
[
gΘ(yt + jed |Xt)

∣∣∣ y1:t−1
]

where the posterior expectation is now with respect to (Θ, Xt) ∼ p(dθ|y1:t−1)p(dxt|y1:t−1, θ).

The H-score at horizon s ∈ J1, T K can thus be written as

Hs(M) = hs
(
(pt,d,j)(t,d,j)∈J1,sK×J1,dyK×J−2,2K

)
(2.24)

where (pt,d,j)(t,d,j)∈J1,sK×J1,dyK×J−2,2K is the vector enumerating the pt,d,j’s in the lexicographic

order of J1, sK× J1, dyK× J−2, 2K induced by the natural order on Z, and hs : Rs×dy×5 → R

is a continuously differentiable function whose gradient ∇hs can be analytically computed.

The details of their functional forms are provided in Appendix C.1.2.
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2.3.2 Using coupled particle independent Metropolis–Hastings

As explained in Section 2.3.1.1, the construction of confidence intervals for H-scores using (2.20)

boils down to producing i.i.d. estimators that are unbiased either for (Et,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K

from (2.22) if the observations are continuous, or for (pt,d,j)(t,d,j)∈J1,sK×J1,dyK×J−2,2K from (2.24)

when the observations are discrete.

The coupled PIMH (Middleton et al., 2019), reviewed in Appendix A.3.2, is a an algorithm

that can concurrently run T pairs of Markov chains such that, for each horizon t ∈ J1, T K,

the t-th pair of chains targets the intermediate posterior distribution p(dθ|y1:t) at horizon t,

while also satisfying all the requirements presented in Section 2.3.1.1 under mild assumptions

(Middleton et al., 2019, Proposition 3). Each iteration of the coupled PIMH invokes pseudo-

marginal Metropolis-Hastings kernels across different horizons and thus requires T proposals,

one for each horizon t ∈ J1, T K. These proposals can be generated from a single run of

SMC (or SMC2). Indeed, running an SMC (resp. SMC2) sampler with Nθ (resp. Nθ and

Nx) particles over all T observations sequentially approximates the successive posterior

distributions p(dθ|y1:t) at every t ∈ J1, T K by empirical distributions ∑Nθ
n=1 W

(m)
θ,t δθ(m)

t
, from

which we can draw proposals θ̃t, along with non-negative unbiased estimators Ẑt of the

evidence p(y1:t) needed to compute the acceptance ratios in the underlying pseudo-marginal

Metropolis-Hastings kernel. The unbiasedness of the Ẑt’s is vital for the validity of the

coupled PIMH, and thus limits the use of adaptive variants of SMC when using them as

proposal distributions within PIMH. Further details are provided in Algorithms 4 and 5 of

Appendix A.3. If one already has a working implementation of SMC, the coupled PIMH

has the advantage of being naturally modularized and simply adds an external layer of

Metropolis-Hastings iterations, with no alteration to the original SMC implementation. The

coupled PIMH also allows for a convenient analysis and enjoys strong theoretical guarantees,

especially on the distribution of its meeting times (Middleton et al., 2018, Proposition 8).
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For a single processor indexed by r, performing one run of coupled PIMH using SMC

(or SMC2) proposals produces T pairs of coupled chains {(V (n)
t ,W (n)

t )n∈N : t ∈ J1, T K},

one for each horizon t ∈ J1, T K, and each pair of chains (V (n)
t ,W (n)

t )n∈N can be used

with (2.13) to produce unbiased estimators (Ê(r)
t,d,j)(d,j)∈J1,dyK×J1,2K or (p̂(r)

t,d,j)(d,j)∈J1,dyK×J−2,2K

depending on the context. By gathering these estimators across different horizons, processor r

can produce vectors (Ê(r)
t,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K or (p̂(r)

t,d,j)(t,d,j)∈J1,sK×J1,dyK×J−2,2K of unbiased

estimators, respectively for (Et,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K or (pt,d,j)(t,d,j)∈J1,sK×J1,dyK×J−2,2K , as

desired. Although the components of these random vectors generally share some dependence,

the key point is that these vectors of unbiased estimators can be generated independently

across R different processors, so that averaging i.i.d. replications of them will still yield a valid

central limit theorem of the form (2.18), thus enabling the construction of confidence intervals

for H-scores given by (2.20). We illustrate the construction of such intervals in Section 2.3.3.

Remark 3. In the case of continuous observations, the expression of the H-score in (2.21)

as a polynomial of conditional expectations allows for a notable alternative to the reliance

on the delta method. If processor r performs 2 independent runs of coupled PIMH with

SMC (or SMC 2) proposals to obtain the unbiased estimators (Ê(r,1)
t,d,j )(t,d,j)∈J1,sK×J1,dyK×J1,2K and

(Ê(r,2)
t,d,j )(t,d,j)∈J1,sK×J1,dyK×J1,2K, then (Ê(r,1)

t,d,1 + Ê
(r,2)
t,d,1 ) unbiasedly estimates 2Et,d,1 by linearity, and

Ê
(r,1)
t,d,2 Ê

(r,2)
t,d,2 unbiasedly estimates (Et,d,2)2 by independence, so that

Ĥ(r)
s =

s∑
t=1

dy∑
d=1

((
Ê

(r,1)
t,1,d + Ê

(r,2)
t,1,d

)
− Ê(r,1)

t,2,d Ê
(r,2)
t,2,d

)

is an unbiased estimator of the H-score Hs(M) of model M at any horizon s ∈ J1, T K. By

using R independent processors to form the sample average H̄s,R = R−1∑R
r=1 Ĥ(r)

s and the

sample variance σ̂2
Ĥs

= R−1∑R
r=1(Ĥ(r)

s − H̄s,R)2, we obtain the confidence interval
 H̄s,R +− q

N (0,1)
1−α/2

√
1
R
σ̂2
Ĥs

 (2.25)
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for Hs(M) at horizon s ∈ J1, T K. This approximate 100(1− α)%-confidence interval retains

the desirable asymptotic regime in the number R of independent processors, and offers an

arguably simpler alternative to the interval from (2.20).

2.3.3 Numerical illustration with diffusion models

As an illustration, we use once more the population dynamics models M2 and M3 from

Chapter 1, restated in Section 2.2.3. In Figure 2.3, we construct approximate 95%-confidence

intervals for the H-scores of each model, at each horizon t ∈ J1, T K. These intervals are based

on the construction (2.20) from Section 2.3, using a coupled PIMH algorithm with SMC2

proposals. The SMC2 samplers use Nθ = 8192 and Nx = 128 particles, with rejuvenation

kernels and a temperature schedule learned from a preliminary adaptive run. The present

attempt uses k = 5 and m = 10 to form the estimators in (2.13). The computations

were performed by R = 1000 processors using AMD Opteron 6300-series CPU cores from

Harvard University’s Odyssey cluster.

Figure 2.3 also shows, for every horizon s ∈ J1, T K, approximate 95%-confidence intervals

for the H-factor HF2|3
s = Hs(M3)−Hs(M2) ofM2 againstM3, formed by adding the estimated

variance to combine the independent intervals for Hs(M2) and Hs(M3) in a similar fashion

as in (2.8). Although these intervals are centered at negative values, which would suggest

a preference for model M3, their range is too wide to rule out (0,+∞). In other words,

the Monte Carlo error in estimating the H-factor appears to be of the same magnitude as

the H-factor itself, preventing any reliable conclusion in deciding which model to select. A

particular advantage of the interval in (2.20) is that it can be conveniently refined by simply

increasing the number R of independent processors. In the asymptotic regime, the length

of the interval would approximately scale as 1/
√
R when R increases. Concurrently, more

fundamental variance reductions and efficiency gains can be obtained by choosing better
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Figure 2.3. Approximate 95%-confidence intervals (vertical segments) obtained from R = 1000
independent coupled PIMH using SMC 2 proposals with Nθ = 8192, Nx = 128, k = 5, and m = 10.
Top panel: H-scores of models M2 (yellow triangles) and M3 (blue squares). Bottom panel: H-factor
of models M2 against M3. See Section 2.3.3.

values of Nθ, Nx, k and m for the coupled PIMH algorithm. We investigate the tuning

and trade-offs of such algorithmic parameters in Section 2.3.4.

One possible diagnostic for the coupled PIMH is to look at how fast the pairs of Markov

chains meet. Figure 2.4 shows boxplots of the realized meeting times (τ (r)
M,t)r∈J1,RK across

the R = 1000 processors, for each model M ∈ {M2,M3} and each horizon t ∈ J1, T K. One

particular feature in the design of coupled PIMH algorithms is that pairs of chains can

meet as soon as the first iteration, with probability at least 1/2, which explains why all the

boxplots are squashed at the value τ (r)
M,t = 1, as predicted by Proposition 8 in Middleton et al.
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(2018). Figures 2.3 and 2.4 suggest that increasing Nθ in the SMC2 proposals could benefit

the estimation of the H-score for model M2 while decreasing its associated meeting times.
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Figure 2.4. Empirical distribution (boxplots) of the meeting times (τ (r)
M,t)r∈J1,RK for each model

M ∈ {M2,M3} (left and right panels), across R = 1000 independent coupled PIMH runs using
SMC 2 proposals with Nθ = 8192 and Nx = 128, for each time horizon t ∈ J1, 41K. All the boxes
appear vertically squashed at τ = 1, and the dots represent outliers whose values exceed the upper
quartiles by more than 1.5 times the interquartile ranges. See Section 2.3.3.

2.3.4 Tuning the coupled PIMH with SMC2 proposals

As forewarned by Jacob et al. (2017, Section 3.1), the performance of unbiased MCMC

methods can vary wildly depending on the choice of algorithmic parameters. This section

provides some thoughts and guidelines to help tuning such parameters in the context of

coupled PIMH with SMC2 proposals.
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2. Uncertainty quantification for model comparison

2.3.4.1 Choice of Nθ

The choice of Nθ directly influences the quality of the particle approximations of the

posteriors p(dθ|y1:t) from which the proposals are drawn. It also affects the variance of

the SMC estimator of the evidences p(y1:t), which directly impacts the distribution of

the meeting times τt. For coupled PIMH algorithms, the distribution of these meeting

times is surprisingly tractable (Middleton et al., 2019, Proposition 8), and can be explicitly

described as a mixture consisting of


τt
∣∣∣ Ẑ(0)

t,Nθ,Nx
∼ Geom

E
min

1,
Ẑ

(1)
t,Nθ,Nx

Ẑ
(0)
t,Nθ,Nx

 ∣∣∣∣∣∣ Ẑ(1)
t,Nθ,Nx

∼ SMC2
Nθ,Nx


Ẑ

(0)
t,Nθ,Nx

∼ SMC2
Nθ,Nx

(2.26)

where Geom(α) denotes a geometric distribution — supported on N∗ by convention — with

probability α of success, whereas the unbiased evidence estimators Ẑ(0)
t,Nθ,Nx

and Ẑ(1)
t,Nθ,Nx

are

generated independently from SMC2 runs with (Nθ, Nx) particles. The other algorithmic

choices in the implementation of SMC2 are made implicit in the notation, and we focus

mostly on the influence of Nθ and Nx on the performance of coupled PIMH algorithms.

As indicated by (2.3) in Section 2.2.1, the SMC estimators Ẑ(0)
t,Nθ,Nx

and Ẑ
(1)
t,Nθ,Nx

are

consistent and asymptotically Normal around the exact evidence Zt as Nθ → +∞, for any

fixed Nx. Increasing Nθ can thus bring the acceptance probability in (2.26) arbitrarily close

to 1, in the sense that P(τt = 1) Nθ→+∞−−−−−→ 1 as stated in Proposition 8 of Middleton et al.

(2019). Therefore, controlling the distribution of the meeting times τt can be achieved by

monitoring the variance of the estimators Ẑt,Nθ,Nx relative to Zt, or equivalently the variance

of log Ẑt,Nθ,Nx when Nθ is large enough. In practice, each of the R processor can perform

one preliminary run of SMC2
Nθ,Nx

to produce the estimators (log Ẑ(r)
t,Nθ,Nx

)r∈J1,RK at each time

horizon t ∈ J1, T K. Looking at the empirical distributions of the (log Ẑ(r)
t,Nθ,Nx

)r∈J1,RK provides
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2. Uncertainty quantification for model comparison

a way to assess the relative variance of Ẑt,Nθ,Nx and its closeness to Normality at each

time horizon t ∈ J1, T K, as illustrated in Figure 2.5. The histograms of Figure 2.5 can be

complemented by computing the sample variances across R replications at each horizon,

as shown in Figure C.1 of Appendix C.2. Once these log-evidence estimators have been

generated, we can preemptively assess the distribution of the meeting times τt at each horizon

t ∈ J1, T K by emulating the distribution in (2.26) as follows:

• Choose a desired number M of draws, then for all ` ∈ J1,MK:

– Draw r∗ uniformly from J1, RK.

– Draw τ̂
(`)
t ∼ Geom

 1
R− 1

∑
r 6=r∗

min
(
1, exp

(
log Ẑ(r)

t,Nθ,Nx
− log Ẑ(r∗)

t,Nθ,Nx

)).
• Output (τ̂ (`)

t )`∈J1,MK as an approximate sample from the distribution of τt.

When the empirical distributions of (log Ẑ(r)
t,Nθ,Nx

)r∈J1,RK appear close enough to Normality

(e.g. as in Figure 2.5), we can alternatively rely on the asymptotic Normality of log-evidence

estimators to simulate approximate meeting times for each time horizon t ∈ J1, T K as:

• Compute the sample mean µ̂t,R and variance σ̂2
t,R of (log Ẑ(r)

t,Nθ,Nx
)r∈J1,RK.

• Choose desired numbers M and n of draws, then for all ` ∈ J1,MK:

– Generate (n+ 1) independent draws (log Z̃(i)
t )i∈J0,nK

i.i.d.∼ N (µ̂t,R, σ̂2
t,R).

– Draw τ̂
(`)
t ∼ Geom

(
1
n

n∑
i=1

min
(
1, exp

(
log Z̃(i)

t − log Z̃(0)
t

)))
.

• Output (τ̂ (`)
t )`∈J1,MK as an approximate sample from the distribution of τt.

The Normal approximations could be replaced by heavier-tailed distributions in order to obtain

more conservative approximations of the tail probabilities of the meeting times. Simulated

meeting times for each model and time horizon are shown in Figure 2.6. They appear in
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2. Uncertainty quantification for model comparison

line with the empirical meeting times observed in Figure 2.4, and suggest an exponential

decay for the marginal tail probabilities of the mixture distributions from (2.26).

Solely focusing on reducing the meeting times would encourage choosing larger values of Nθ.

However, doing so would quickly be prohibitive and hindered by the limited computational

resources available on any given processor. Increasing Nθ would also increase the cost and

computational time of each SMC2 runs, thus allowing for fewer PIMH iterations within a

budgeted time window and possibly hurting the resulting estimators. Such trade-offs have

been investigated and quantified by Doucet, Pitt, Deligiannidis and Kohn (2015) in the

context of pseudo-marginal algorithms, where they recommend aiming for the standard

deviation of log Ẑt,Nθ,Nx to be around 1 when the underlying idealized PIMH is efficient and

around 1.7 otherwise. With the ability to make up for relatively inefficient PIMH estimators

by using more independent processors, these guidelines do not directly apply here, and

further investigation would be needed to fully understand how to choose Nθ optimally as to

minimize the length of the confidence intervals for a fixed computational time budget. It is

also worth mentioning that for model selection purposes, the task at hand is not so much to

accurately estimate the individual H-scores of each model, but rather to correctly estimate

the sign of their difference. The former task would likely require Nθ to be scaled linearly

as the number T of observations increases (Del Moral et al., 2006; Chopin et al., 2013) in

order to stabilize the variance of the estimated log-evidence and maintain the quality of the

consequent coupled PIMH estimators, whereas the latter task — assuming consistency of

H-scores as in Theorems 1 and 2 of Chapter 1 — might allow for a more lenient scaling

since the magnitude of the difference of H-scores also tends to grow linearly with the number

of observations, making the estimation of its sign presumably easier. Quantifying these

interplays more precisely could be an interesting direction to explore.
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Figure 2.5. Histograms of the estimated log-evidences log Ẑt from R = 1000 independent runs
of SMC 2 with Nθ = 8192 and Nx = 128. Each subplot corresponds to a particular time horizon
t ∈ J1, 40K. The histogram for horizon t = 41 is similar to the one for t = 40 and is not shown here
so as to make the layout more convenient. The y-axis representing counts are irrelevant and omitted
for better readability. The top five rows (yellow) correspond to model M2, and the bottom five rows
(blue) to model M3. See Section 2.3.4.1.
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2.3.4.2 Choice of Nx

Although SMC2 algorithms are valid SMC samplers for any fixed Nx, the choice of Nx presents

similar variance-cost trade-offs as the choice of Nθ. The necessity of unbiasedness for the

evidence estimators Ẑt,Nθ,Nx prevents the direct use of automatic calibration procedures such

as the ones described in Section 3.6 of Chopin et al. (2013), although one could envision

using a preliminary run with adaptive Nx in order to heuristically guide the final choice of

fixed schedule for Nx. Fewer theoretical results exist on the impact of Nx on the estimators

Ẑt,Nθ,Nx , and an interesting avenue of research would be to derive approximate finite sample

bounds for the variance of Ẑt,Nθ,Nx as a function of both Nθ and Nx, in the spirit of Cérou,

Del Moral and Guyader (2011). Such bounds would then need to be further combined with

the additional computational considerations raised by coupled PIMH algorithms.

2.3.4.3 Choice of k and m

As extensively discussed by Jacob et al. (2017), a well-thought choice of k and m can lead

to drastic efficiency gains for the estimator in (2.13). The general guidelines in Section 3.1

of Jacob et al. (2017) propose to choose k as a large quantile of the distribution of the

meeting time τ , so that P(τ > k) is small. The value of m is then set to a large multiple

of k, typically m = 10k. Under appropriate regularity conditions, these heuristic rules

ensure that the efficiency of the coupled PIMH is similar to its non-coupled counterpart,

so that debiasing PIMH estimators can be performed at virtually no loss of efficiency. The

tuning of (k,m) for general unbiased MCMC methods traditionally requires one to perform

many replications of the full coupled MCMC algorithm in order to obtain reliable empirical

distributions of the meeting times, which are then used to guide the final choice of (k,m) for

the subsequent coupled MCMC replications. Interestingly, the coupled PIMH algorithm enjoys

the remarkable property of having meeting times whose distributions can be conveniently

emulated. As explained in Section 2.3.4.1 and shown in Figure 2.6, the distribution of the
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meeting times can be approximately simulated by only performing one preliminary run of

SMC2 on each processor, instead of full runs of coupled PIMH with SMC2 proposals. The

simulated distributions of the meeting times can then inform the choice of k and m.

2.3.4.4 Budget allocation

Many practical settings consist in having access to a large number R of independent processors,

each with its own relatively limited computational resources, and a global time budget to

comply with. This requires us to consider a notion of efficiency that balances the variances of

estimators with their expected costs, as in the framework of Glynn and Whitt (1992a). Such

considerations are non-trivial: smaller values of Nθ and Nx would lead to estimators with

larger variances, but these estimators would be cheaper and faster to compute by independent

processors, thus allowing for more independent replications. This could lead to averaged

estimators with smaller variances than their hypothetical counterparts formed by averaging

fewer more accurate estimators, within the same fixed computational time window.

In practice, the computational time of coupled PIMH can vary significantly across different

processors, due to the randomness of the algorithm and possible hardware disparities. This

is conspicuous from Figure 2.7, which shows the total wall-clock times used by each of the

R = 1000 processors to complete a full run of coupled PIMH with SMC2 proposals using

Nθ = 8192, Nx = 128, k = 5, and m = 10. Given a fixed time budget, a better use of

resources would consist in allowing each processor to keep starting new chains and producing

new estimators within the allocated time window. Some precautions are in order when

aggregating estimators from algorithms with random computation times within a fixed time

frame, as highlighted in Glynn and Heidelberger (1990), whose Corollary 7 offers a practical

solution to perform a statistically valid aggregation. Computations of unbiased MCMC

estimators under such time budget constraints are demonstrated in Section 3.2.2 and Figure

9 of Middleton et al. (2018). Similar considerations can be applied at the level of each

58



2. Uncertainty quantification for model comparison

processor, since the distributions of meeting times in Figure 2.4 appear to vary greatly across

different time horizons. All things considered, the task of tuning (Nθ, Nx, k,m) to optimize

the efficiency of the coupled PIMH in a budgeted time setting is challenging but of great

practical importance, and would deserve further dedicated research.

2.4 Discussion

The construction of confidence intervals using (2.11) and (2.20), respectively for the log-

evidence and the H-score, only requires modest implementation efforts. The former can

be constructed as soon as one has access to a working SMC sampler, which generally

accommodates a wide range of models whose likelihoods can be either evaluated or unbiasedly

estimated. For the latter, the incremental effort needed to turn an SMC sampler into

the proposal distribution of a coupled PIMH algorithm is minimal, as it only requires the

addition of an external layer of coupled Metropolis-Hastings acceptance step, without any

alterations to the existing SMC implementation. Although the proposed algorithms are

arguably easy to implement, the question of using them to the best of their abilities remains

open, and further investigation would be needed to fully understand how to optimally tune

their algorithmic parameters. An alternative to the coupled PIMH used to form the interval in

(2.20) would be to use coupled particle marginal Metropolis-Hastings algorithms (Middleton

et al., 2018), whose implementation would require a more involved coupling procedure but

whose performance would be worth exploring.

Both the proposed confidence intervals from (2.11) and (2.20) enjoy an asymptotic validity

in the number R of independent replications. Their construction is thus particularly suited for

parallel computing on modern architectures made of many processors with limited individual

resources. The ability to refine these intervals by generating more independent replicates is

well-adapted to settings with budgeted computational time windows. It also opens the door
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to sequential model selection procedures: starting from a computationally cheap confidence

interval for the difference in scores, further independent replications would be provided on

demand until the updated confidence interval is refined enough to distinguish between the two

models of interest. Such stopping rules would need to be carefully designed so as to avoid the

common pitfalls of sequential hypothesis testing (e.g. Glynn and Whitt, 1992b, and references

therein). Generalizing our approach from 2 to a large number K of candidate models would

require further research, since naive comparisons of the pairwise differences in scores would

suffer from multiple testing issues. By regarding the negative of the models’ scores as expected

rewards for which we can draw unbiased i.i.d. estimators, we could envision recasting the

task sequential model selection as a best-arm identification problem in a multi-arm bandit

setting with K arms (e.g. Kaufmann, Cappé and Garivier, 2016, and references therein).

There are fundamentally two sources of uncertainty when using the log-evidence or the

H-score to compare models M1 and M2 given realized observations y1:T from some unknown

data generating process p?. The first source of uncertainty lies in the Monte Carlo error

induced by using estimated log-Bayes factors ˆLBF1|2
T or H-factors Ĥ1|2

T as proxies for the exact

but unavailable log-Bayes factors LBF1|2
T or H-factors H1|2

T . Quantifying this uncertainty

was at the heart of this chapter, and we addressed this issue by constructing confidence

intervals for the exact LBF1|2
T and H1|2

T . In the idealized case where LBF1|2
T or H1|2

T can

be exactly computed, choosing the model with the smallest realized score constitutes a

sensible selection rule, as supported by decision theory.

However, if the interest lies in future predictions instead, one would then have to look at

expected scores with respect to the unknown data generating distribution p?. In such a setting,

the second source of uncertainty concerns the sampling error induced by using the realized

differences in scores LBF1|2
T or H1|2

T in place of the exact but unavailable expected differences,

typically given by the differences in divergences ∆KL(M1,M2) = KL(p?,M2) − KL(p?,M1)

and ∆DH(M1,M2) = DH(p?,M2) − DH(p?,M1). Assuming perfect access to LBF1|2
T and
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H1|2
T , this second kind of uncertainty would pertain to questions about how large |LBF1|2

T |

or |H1|2
T | need to be in order to be regarded as statistically significant with respect to

the sampling distribution of the observations y1:T . Such concerns touch upon the need of

assessing frequentist properties of procedures based on LBF1|2
T and H1|2

T . Specific scales

to interpret Bayes factors have been previously provided in the literature, including an

arguably questionable one by Jeffreys (1961, Appendix B) that was later revisited by Kass

and Raftery (1995, Section 3.2). More recent considerations rely on studying the asymptotic

distribution of log-Bayes factors as the sample size increases (e.g. Vuong, 1989; Gelfand

and Dey, 1994; Walker, 2004; Zhou and Guan, 2018). The lack of corresponding results

for the H-score leaves room for interesting topics of research. Quantifying that second

kind of uncertainty requires a good understanding of the sampling distribution of LBF1|2
T

and H1|2
T , which is still elusive even in large sample regimes. Consistency results of the

form T−1 LBF1|2
T −→ ∆KL(M1,M2) and T−1 H1|2

T −→ ∆DH(M1,M2) only provide first-order

asymptotics, without any information about the sampling fluctuations around the respective

limits. Testing the significance of the difference in scores would rather require second-order

asymptotics to provide more precise distributional statements, presumably for quantities of

the form
√
T
(
T−1LBF1|2

T −∆KL(M1,M2)
)
and
√
T
(
T−1H1|2

T −∆DH(M1,M2)
)
by analogy

with standard central limit theorems. As suggested by our proofs of the consistency of

H-scores in Appendix B.5.1, first-order type of results typically rely on the consistency of

the posterior distribution, whereas second-order asymptotics tend to require its asymptotic

Normality, none of which has been established yet in the context of general state-space models,

to the best of our knowledge. Studying the consistency and asymptotic Normality of posterior

distributions for possibly misspecified state-space models will be the focus of Chapter 3.
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Figure 2.6. Histograms of M = 105 simulated meeting times (τ̂ (`)
t )`∈J1,MK of coupled PIMH chains

using SMC 2 proposals with Nθ = 8192 and Nx = 128, for each horizon t ∈ J1, 40K. The histogram
for horizon t = 41 is similar to the one for t = 40 and is not shown here so as to make the layout
more convenient. The top five rows (yellow) correspond to model M2, and the bottom five rows
(blue) to model M3. A logarithmic scale in base 10 is used on the y-axis for better readability, and
the displayed counts are only relevant to the extent that they suggest an exponential decay of the
meeting times’ tail probabilities. See Section 2.3.4.1.
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Figure 2.7. Total wall-clock computation times across R = 1000 processors (artificially sorted
in increasing order for better readability) to perform a coupled PIMH using SMC 2 proposals with
Nθ = 8192, Nx = 128, k = 5, and m = 10 for models M2 (top panel) and M3 (bottom panel).
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“ On devrait vivre a posteriori.
On décide tout trop tôt. ”
— Daniel Pennac, Aux fruits de la passion

3
Posterior consistency and asymptotic

Normality in state-space models
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3. Posterior consistency and asymptotic Normality in state-space models

The work in this chapter has been done in collaboration with Judith Rousseau (Department of

Statistics, Oxford University), Arnaud Doucet (Department of Statistics, Oxford University),

and Pierre E. Jacob (Department of Statistics, Harvard University). It corresponds to an

upcoming paper at the time of writing.

3.1 Introduction

Understanding the asymptotic behavior of standard statistical methods in the context of state-

space models has proved to be a challenging problem, mostly due to the dependence between

observations and the intractability of the likelihood function. Some major advances have been

obtained on the asymptotic behavior of the maximum likelihood estimation methods. This

line of research was initiated by Baum and Petrie (1966) in the case of well-specified models

with a finite space X of latent states and a finite space Y of observations. The consistency of

the maximum likelihood estimator (MLE) was later extended by Leroux (1992) to the case

of finite state spaces X and general observation spaces Y, while the asymptotic Normality of

the MLE in that setting was derived in Bickel, Ritov and Ryden (1998). A series of related

works under increasingly weaker assumptions followed, notably by Douc and Matias (2001)

and Douc, Moulines and Ryden (2004) who proved the consistency and asymptotic Normality

of the MLE under conditions that essentially amount to having a compact latent space X.

Generalizations of these results to non-compact latent spaces and misspecified models were

ultimately derived by Douc, Moulines, Olsson and Van Handel (2011) and Douc and Moulines

(2012). A comprehensive review on the subject can be found in Douc et al. (2014).

On the Bayesian side of things, the more challenging analysis of the asymptotic properties

of posterior distributions in state-space models has been much less studied to this day,

despite its importance. Understanding the asymptotic behavior of posterior distributions

is paramount to establishing desirable properties of other Bayesian methods, such as the
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consistency of model selection criteria like the BIC (Schwartz, 1978; Yonekura, Beskos and

Singh, 2018) or the H-score (Section 1.3.2 of Chapter 1). The consistency of the posterior

distribution and its asymptotic Normality — via results analogous to the Bernstein-von-Mises

theorem — also play a key role in justifying practical implementation choices (e.g. designing

proposal distributions), while ensuring the stability and validity of various numerical methods

including SMC (Chopin, 2002; Whiteley, 2013; Chopin et al., 2013) and variational inference

(Wang and Blei, 2018, and references therein). Such traditional results — which have been

well-established in a variety of settings, including parametric models with i.i.d. observations

(e.g. Van der Vaart, 2000; Ghosh and Ramamoorthi, 2003; Lehmann and Casella, 2006;

Le Cam and Yang, 2012), as well as semi-parametric (e.g. Kim, 2006; De Blasi and Hjort,

2009; Rivoirard and Rousseau, 2012; Bickel and Kleijn, 2012; Castillo, 2012; Castillo and

Nickl, 2014; Castillo and Rousseau, 2015) or nonparametric (Freedman, 1999; Kim and Lee,

2004; Boucheron and Gassiat, 2009; Johnstone, 2010; Bontemps, 2011; Castillo and Nickl,

2013; Ghosal and Van der Vaart, 2017) models — are still lacking in the context of general

state-space models. On the one hand, a version of the Bernstein-von-Mises theorem for

state-space models was derived by De Gunst and Shcherbakova (2008), albeit under strong

mixing conditions that essentially assume the compactness of the latent space X, and that

are thus hardly met in practice even for simple linear Gaussian state-space models. On the

other hand, posterior consistency in general spaces was obtained by Douc et al. (2019) for

the larger class of partially observed Markov models, but only in a well-specified setting.

Our goal is to establish the consistency and asymptotic Normality of posterior distributions

for state-space models, under assumptions that are as weak as the ones from Douc and

Moulines (2012), while also allowing for model misspecification. Although this chapter falls

short of presenting a complete proof at the time of writing, it provides some directions to

explore, and highlights the main obstacles to overcome when studying Bayesian asymptotics

in such a setting. In Section 3.2, we present key ingredients that ensure the consistency and
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asymptotic Normality of posterior distributions. These ingredients are stated as high-level

assumptions, under which posterior consistency and asymptotic Normality can be readily

proved, as respectively shown in Sections 3.3 and 3.4. The main difficulty is to determine

reasonable sufficient conditions on the state-space model for these high-level assumptions to

hold, as discussed in Section 3.5. By relying on existing results from the previously cited

works, the only problematic assumption is the uniform convergence of the observed Fisher

information around the limit of the MLE, which we investigate in Section 3.6. The consistency

and asymptotic Normality of posterior distributions are numerically illustrated in Section

3.7, using the population dynamics and stochastic volatility models introduced in Chapter 1.

Shortcomings and directions for future research are discussed in Section 3.8.

3.2 Fundamental ingredients

We borrow some of the notations introduced in the previous chapters, letting P? (resp. E?)

denote the probability (resp. expectation) induced by the data-generating mechanism of

the observed stochastic process (Yn)t∈N. When the context is clear, we will respectively

denote the log-likelihood function and posterior density based on n observations by `n(θ)

and π(·|Y0:n−1), without making the dependence on the initial distribution of the latent

states explicit. The asymptotic irrelevance of that initial distribution will be justified in

Section 3.6, by invoking suitable forgetting properties of the latent Markov chain. We now

present a few high-level assumptions (A1 to A6) from which the consistency and asymptotic

Normality of the posterior distribution naturally follow (Sections 3.3 and 3.4). The main

difficulty will be to ensure that such assumptions hold, by imposing only weak conditions

on the underlying state-space model (Section 3.5).

Assumption A1. The parameter space T ⊆ Rd is a compact metric space, and the prior

distribution Π has a density π with respect to the Lebesgue measure.
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Assumption A2 (Convergence of the log-likelihood). For all θ ∈ T, we have

1
n
`n(θ) P?−a.s.−−−−→

n→+∞
`(θ)

where the limit function θ 7→ `(θ) = E? [log pθ(Y0|Y−∞:−1)] is assumed to be well-defined and

upper semi-continuous on T.

Assumption A3 (Existence and uniqueness of θ?). The limit function θ 7→ `(θ) from

Assumption A2 is uniquely maximized on T, i.e. there exists θ? ∈ T such that

arg max
θ∈T

`(θ) = {θ?}.

Assumption A4 (Consistency of the MLE). P?-almost surely, the maximum likelihood

estimator θ̂n is well-defined for all n ∈ N∗ and is strongly consistent, i.e.

‖θ̂n − θ?‖
P?−a.s.−−−−→
n→+∞

0.

Assumption A5 (Well-separation of θ?). P?-almost surely, for all δ > 0, we have

lim sup
n→+∞

(
sup

‖θ−θ?‖≥δ

1
n
`n(θ)

)
< `(θ?).

Assumption A6 (Uniform convergence of the observed Fisher information around θ?). For

all n ∈ N∗, the log-likelihood function θ 7→ `n(θ) is twice continuously differentiable in the

neighborhood of θ?, and there exists a symmetric matrix J? > 0 such that P?-almost surely,

for all ε > 0, there exists δε > 0 and Nε ∈ N for which

sup
‖θ−θ?‖<δε
n>Nε

∥∥∥∥ 1
n
∇2`n(θ) + J?

∥∥∥∥ < ε.

Remark 4. Most existing proofs of Bernstein-von Mises type of results in the context of

state-space models (e.g. De Gunst and Shcherbakova, 2008) tend to use a stronger version

of Assumption A2, requiring the convergence of the log-likelihood n−1`n to be uniform over
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all compact subsets of T, thus inducing the continuity of the limit function `. Our proof gets

away with weaker pointwise convergence of n−1`n and upper semi-continuity of ` by exploiting

instead a control of the Hessian n−1∇2`n in the neighborhood of θ?, given by Assumption A6,

which we aim to ensure under conditions similar to the ones in Douc and Moulines (2012).

Remark 5. Assumption A6 is likely to be unnecessarily strong for our purposes. In the spirit

of Theorem 3 from Douc et al. (2004), we might only ask for the less demanding assumption

that for any sequence (θ̃n)n∈N∗ ∈ TN∗, if θ̃n
P?−a.s.−−−−→
n→+∞

θ?, then −n−1∇2`n(θ̃n) P?−a.s.−−−−→
n→+∞

J?. We

will refer to this weaker version of A6 as Assumption Ã6.

Before proving the consistency of the posterior distribution (Theorem 11) and its

asymptotic Normality (Theorem 12), we start by proving some technical consequences

of Assumptions A1 to A6, including the P?-almost sure asymptotic equicontinuity of

{θ 7→ n−1`n(θ)}n∈N∗ at θ? (Lemma 6), the convergence of n−1`n(θ̂n) to `(θ?) (Lemma 7),

the well-separation of the MLE (Lemma 8), and the convergence of −n−1∇2`n(θ̂n) to J?

(Lemma 10). The proofs of these results are presented in Appendix D.

Lemma 6 (Asymptotic equicontinuity of n−1`n at θ?). If Assumptions A2 to A6 hold, then

P?-almost surely, for all ε > 0, there exists δε > 0 and Nε ∈ N such that

sup
‖θ−θ?‖<δε
n>Nε

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣ < ε.

Lemma 6 combined with Assumptions A2 and A4 directly implies the P?-almost sure

convergence of n−1`n(θ̂n) to `(θ?), as stated by the following lemma.

Lemma 7 (Convergence of n−1`n(θ̂n) to `(θ?)). If Assumptions A2 to A6 hold, then P?-almost

surely, for all ε > 0, there exists Nε ∈ N such that

sup
n>Nε

∣∣∣∣ 1n`n(θ̂n)− `(θ?)
∣∣∣∣ < ε.
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The following lemma will come in handy when proving of the asymptotic Normality

of the posterior distribution (Theorem 12), as it allows for a control over the behavior of

the log-likelihood function far from the MLE.

Lemma 8 (Well-separation of the MLE). If Assumptions A2 to A6 hold, then P?-almost

surely, for all δ > 0, there exists ηδ > 0 and Nδ ∈ N such that, for all n > Nδ, we have

sup
‖θ−θ̂n‖≥δ

1
n
`n(θ) <

1
n
`n(θ̂n)− ηδ.

Remark 9. Lemma 8 is a P?-almost sure version of Lemma 3.1 from De Gunst and

Shcherbakova (2008). However, the proof from De Gunst and Shcherbakova (2008) cannot

directly be used since it assumes that the convergence in Assumption A2 is uniform on T,

which consequently ensures the continuity of the limit function θ 7→ `(θ). Nevertheless, the

result can still be proved in our setting by relying on Assumption A6 instead.

Finally, the next lemma will play an important role as it establishes the convergence of

−n−1∇2`n(θ̂n) to J?, by exploiting the uniform control of the observed Fisher information

around θ? provided by Assumption A6.

Lemma 10 (Convergence of −n−1∇2`n(θ̂n)). If Assumptions A4 and A6 hold, then P?-almost

surely, for all ε > 0, there exists Nε ∈ N such that

sup
n>Nε

∣∣∣∣ 1n∇2`n(θ̂n) + J?
∣∣∣∣ < ε.

where J? is the positive definite symmetric matrix introduced in Assumption A6.

3.3 Consistency of the posterior

Using the previous assumptions and Lemma 6, we can now prove the P?-almost sure consistency

of the posterior distribution, as stated by the following theorem.

70



3. Posterior consistency and asymptotic Normality in state-space models

Theorem 11 (Posterior consistency). Under Assumptions A1 to A6, if the prior distribution

Π satisfies Π(‖θ− θ?‖ < ε) > 0 for all ε > 0, then for all neighborhoods U ⊆ T of θ?, we have

Π(U |Y0:n−1) P?−a.s.−−−−→
n→+∞

1.

Proof of Theorem 11. Let U ⊆ T be an arbitrary neighborhood of θ?. By our assumption on

the prior Π with density π, we have
∫
U exp (`n(θ)) π(θ)dθ > 0, so that we may write

Π(U |Y0:n−1) =

∫
U exp

(
n
(

1
n
`n(θ)

))
π(θ)dθ∫

T exp
(
n
(

1
n
`n(θ)

))
π(θ)dθ

= 1

1 +
∫
T∩Uc exp

(
n ( 1

n
`n(θ))

)
π(θ)dθ∫

U exp
(
n ( 1

n
`n(θ))

)
π(θ)dθ

.

For any δ > 0, define Uδ = {θ ∈ T : ‖θ − θ?‖ < δ}.

Since U is a neighborhood of θ?, there exists δ? > 0 such that Uδ ⊆ U for all δ ∈ (0, δ?]. The

non-negativity of θ 7→ exp (`n(θ)) π(θ) implies that

Π(U |Y0:n−1) ≥ 1

1 +
∫
T∩Uc exp

(
n ( 1

n
`n(θ))

)
π(θ)dθ∫

Uδ
exp
(
n ( 1

n
`n(θ))

)
π(θ)dθ

(3.1)

for all 0 < δ ≤ δ?. As a probability, we also naturally have Π(U |Y0:n−1) ≤ 1.

All we need now is to choose a particular δ ∈ (0, δ?], for which we will prove that
∫
T∩Uc exp

(
n
(

1
n
`n(θ)

))
π(θ)dθ∫

Uδ exp
(
n
(

1
n
`n(θ)

))
π(θ)dθ

P?−a.s.−−−−→
n→+∞

0. (3.2)

This will be achieved by suitably upper-bounding the numerator and lower-bounding the

denominator. We place ourselves on an intersection of events of P?-probability equal to 1, on

which Assumptions A2 to A6 and Lemma 6 simultaneously hold.

For the numerator, we have T ∩ U c ⊆ {‖θ− θ?‖ ≥ δ?}, so by Assumption A5, there exists

η? > 0 and N? ∈ N such that we have, for all n > N?,

sup
θ∈T∩Uc

1
n
`n(θ) ≤ sup

‖θ−θ?‖≥δ?

1
n
`n(θ) < `(θ?)− 2η?. (3.3)
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For the denominator, Assumption A2 and Lemma 6 guarantee the existence of some δη? > 0

and Nη? ∈ N such that, for all positive δ < δη? and all n > Nη? , we have both

sup
θ∈Uδ

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣ ≤ sup
‖θ−θ?‖<δη?

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣ < η?

2 (3.4)

and ∣∣∣∣ 1n`n(θ?)− `(θ?)
∣∣∣∣ < η?

2 . (3.5)

Let δ = min(δη? , δ?) ∈ (0, δ?] and N = max(Nη? , N
?). Then, the triangle inequality combined

with (3.4) and (3.5) gives us, for all θ ∈ Uδ and all n > N ≥ Nη? ,∣∣∣∣ 1n`n(θ)− `(θ?)
∣∣∣∣ ≤ ∣∣∣∣ 1n`n(θ)− 1

n
`n(θ?)

∣∣∣∣+ ∣∣∣∣ 1n`n(θ?)− `(θ?)
∣∣∣∣

≤ sup
θ∈Uδ

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣+ ∣∣∣∣ 1n`n(θ?)− `(θ?)
∣∣∣∣

< η?

so that, for all n > N , we have

inf
θ∈Uδ

1
n
`n(θ) > `(θ?)− η?. (3.6)

To summarize, equations (3.3) and (3.6) ensure that, for all n > N , we have

sup
θ∈T∩Uc

1
n
`n(θ) < `(θ?)− 2η? < `(θ?)− η? < inf

θ∈Uδ

1
n
`n(θ). (3.7)

Using (3.7), we may now prove (3.2). For all n > N , we have

0 ≤

∫
T∩Uc exp

(
n
(

1
n`n(θ)

))
π(θ)dθ∫

Uδ exp
(
n
(

1
n`n(θ)

))
π(θ)dθ

≤ e(n(`(θ?)−2η?))

e(n(`(θ?)−η?))
Π (T ∩ U c)

Π (Uδ)
≤ e−nη

? Π (T ∩ U c)
Π (Uδ)

−−−−−→
n→+∞

0.

Plugging this back into (3.1) finally yields

Π(U |Y0:n−1) P?−a.s.−−−−→
n→+∞

1

which concludes the proof of Theorem 11.
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3.4 Asymptotic Normality of the posterior

In order to prove the asymptotic Normality of the posterior (Theorem 12), we make an

additional assumption about the continuity of the prior density at θ? (Assumption A7).

Assumption A7 (Continuity and positivity of the prior density). The prior density π is

continuous and strictly positive in the neighborhood of θ?.

Theorem 12 (Asymptotic Normality of the posterior distribution). Let θ̂n and θn respectively

denote the MLE and a random variable following the posterior distribution with n observations

Y0:n−1 ∈ Yn. Let h 7→ π(h |Y0:n−1) conveniently denote the posterior density on Rd of the

random variable h =
√
n(θn − θ̂n). If Assumptions A1 to A7 hold, then

∫
Rd

∣∣∣∣∣∣π(h | Y0:n−1)− 1√
(2π)d|V ∗|

exp
(
−h

T (V ∗)−1h

2

)∣∣∣∣∣∣ dh P?−a.s.−−−−→
n→+∞

0

where V ∗ = (J?)−1 and J? is the positive definite symmetric matrix introduced in A6.

Proof of Theorem 12. We place ourselves on an intersection of events of P?-probability equal

to 1, on which Assumptions A2 to A6, Lemma 6, and Lemma 8 simultaneously hold. In this

proof, we will say that a predicate P (n) holds for all n large enough if there exists N ∈ N

such that the predicate P (n) holds for all n > N .

Recall that for all positive semi-definite symmetric matrices A ∈ Rd×d and all vectors

x ∈ Rd, we have the inequalities λ1(A)‖x||2 ≤ xTAx ≤ λd(A)‖x‖2 and |xTAx| ≤ ‖A‖ ‖x‖2,

where ‖A‖ denotes the spectral norm of A. The matrix J? given by Assumption A6 is positive

definite and thus invertible, so we may define V ∗ = (J?)−1 which is a fortiori positive definite.

73



3. Posterior consistency and asymptotic Normality in state-space models

We introduce the quantities

Dn =
∫
Rd
π

(
θ̂n + h√

n

)
exp

(
`n

(
θ̂n + h√

n

)
− `n

(
θ̂n
))

dh ,

π(h | Y0:n−1) =
π
(
θ̂n + h√

n

)
exp

(
`n
(
θ̂n + h√

n

)
− `n

(
θ̂n
))

Dn

,

In =
∫
Rd

∣∣∣∣∣∣π(h | Y0:n−1)− 1√
(2π)d|V ∗|

exp
(
−h

T (V ∗)−1h

2

)∣∣∣∣∣∣ dh.
Our goal is to prove

In
P?−a.s.−−−−→
n→+∞

0. (3.8)

Let us define

I(1)
n =

∫
Rd

∣∣∣∣∣π
(
θ̂n + h√

n

)
exp

(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)
− π (θ?) exp

(
−h

T (V ∗)−1h

2

)∣∣∣∣∣ dh ,

I(2)
n =

∫
Rd

∣∣∣∣∣∣π (θ?) exp
(
−h

T (V ∗)−1h

2

)
− Dn√

(2π)d|V ∗|
exp

(
−h

T (V ∗)−1h

2

)∣∣∣∣∣∣ dh.
In order to obtain (3.8), it is sufficient to prove

I(1)
n

P?−a.s.−−−−→
n→+∞

0. (3.9)

Indeed, if (3.9) holds, then combining it with the triangle inequality for integrals leads to

Dn
P?−a.s.−−−−→
n→+∞

∫
Rd
π (θ?) exp

(
−h

T (V ∗)−1h

2

)
dh = π (θ?)

√
(2π)d|V ∗|. (3.10)

From (3.10), it follows that the integrand in I(2)
n converges to 0 as n→ +∞ for all h ∈ Rd,

and is dominated by the integrable function h 7→ exp(−hT (V ∗)−1h/2) for all n large enough.

By the dominated convergence, we get

I(2)
n

P?−a.s.−−−−→
n→+∞

0. (3.11)
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Using (3.9) and (3.11) with the triangle inequality, we obtain

0 ≤ DnIn ≤ I(1)
n + I(2)

n
P?−a.s.−−−−→
n→+∞

0 (3.12)

Since Dn converges to a positive finite limit via (3.10), the limit in (3.12) implies (3.8) as

desired, and the asymptotic Normality of the posterior distribution is then proved.

Therefore, all we need now is to prove (3.9). Let us define

I(1,1)
n =

∫
Rd

∣∣∣∣∣∣π
(
θ̂n + h√

n

)
exp

(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)
− π(θ̂n) exp

−hT [− 1
n
∇2`n(θ̂n)]h

2

∣∣∣∣∣∣ dh,

I(1,2)
n =

∫
Rd

∣∣∣∣∣∣π
(
θ̂n
)

exp
−hT [− 1

n
∇2`n(θ̂n)]h

2

− π(θ?) exp
(
−h

T (V ∗)−1h

2

)∣∣∣∣∣∣ dh.
By the triangle inequality, we have

0 ≤ I(1)
n ≤ I(1,1)

n + I(1,2)
n . (3.13)

Proving (3.9) thus boils down to proving that both I(1,1)
n and I(1,2)

n converge to 0.

By combining the convergence of θ̂n to θ? (Assumption A4), the continuity of the prior den-

sity π at θ? (Assumption A7), and the convergence of −n−1∇2`n(θ̂n) to J? = (V ∗)−1 (Lemma

10), we get the convergence of the integrand in I(1,2)
n to 0 as n→ +∞, for all h ∈ Rd. Moreover,

the convergence of π(θ̂n) and −n−1∇2`n(θ̂n) to their respective limits guarantees that, for

all n large enough, we have π(θ̂n) ≤ π(θ?) + 1 and λ1(−n−1∇2`n(θ̂n)) ≥ λ1((V ∗)−1)/2 > 0.

Using the triangle inequality, this implies that, for all n large enough, the integrand in I(1,2)
n is

dominated by the integrable function h 7→ 2(π(θ?) + 1) exp(−λ1((V ∗)−1)‖h‖2/4). Therefore,

the dominated convergence theorem implies that

I(1,2)
n

P?−a.s.−−−−→
n→+∞

0. (3.14)

With (3.13) and (3.14), all that remains to be done in order to prove (3.9) is to prove

I(1,1)
n

P?−a.s.−−−−→
n→+∞

0. (3.15)
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Thus, the rest of the proof will focus on obtaining (3.15).

For all δ > 0, we can partition I(1,1)
n as

I(1,1)
n = I

(1,1,1)
n,δ + I

(1,1,2)
n,δ (3.16)

where

I
(1,1,1)
n,δ =

∫
‖h‖>δ

√
n

∣∣∣∣∣∣π
(
θ̂n + h√

n

)
exp

(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)
− π(θ̂n) exp

−hT [− 1
n
∇2`n(θ̂n)]h

2

∣∣∣∣∣∣ dh ,

I
(1,1,2)
n,δ =

∫
‖h‖≤δ

√
n

∣∣∣∣∣∣π
(
θ̂n + h√

n

)
exp

(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)
− π(θ̂n) exp

−hT [− 1
n
∇2`n(θ̂n)]h

2

∣∣∣∣∣∣ dh .
We now prove that for a suitable choice of δ small enough, both I(1,1,1)

n,δ and I(1,1,2)
n,δ converge

to 0 as n→ +∞, which will imply (3.15) thanks to the decomposition in (3.16).

Starting with I(1,1,1)
n,δ , for all δ > 0, we introduce

I
(1,1,1,1)
n,δ =

∫
‖h‖>δ

√
n

∣∣∣∣∣π
(
θ̂n + h√

n

)
exp

(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)∣∣∣∣∣ dh ,

I
(1,1,1,2)
n,δ =

∫
‖h‖>δ

√
n

∣∣∣∣∣∣π(θ̂n) exp
−hT [− 1

n
∇2`n(θ̂n)]h

2

∣∣∣∣∣∣ dh ,
so that by the triangle inequality we obtain

I
(1,1,1)
n,δ ≤ I

(1,1,1,1)
n,δ + I

(1,1,1,2)
n,δ . (3.17)

The first term I
(1,1,1,1)
n,δ can be controlled with the well-separation of the MLE from Lemma 8.

Indeed, by Lemma 8, there exists ηδ > 0 such that

sup
‖θ−θ̂n‖≥δ

(
`n(θ)− `n(θ̂n)

)
< −n ηδ (3.18)

for all n large enough. By combining (3.18) with the fact that the integral of a probability

density is upper-bounded by 1, we obtain

0 ≤ I
(1,1,1,1)
n,δ ≤ exp

 sup
‖θ−θ̂n‖≥δ

(
`n(θ)− `n(θ̂n)

) ∫
‖h‖>δ

√
n

π

(
θ̂n + h√

n

)
dh ≤ exp (−n ηδ)
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which leads to

I
(1,1,1,1)
n,δ

P?−a.s.−−−−→
n→+∞

0 (3.19)

since ηδ > 0. This result holds for all δ > 0.

The second term I
(1,1,1,2)
n,δ can be controlled by exploiting the convergence of −n−1∇2`n(θ̂n)

to J? given by Lemma 10, and the convergence of π(θ̂n) to π(θ?) following from the consistency

of the MLE (Assumption A4) and the continuity of the prior density (Assumption A7). These

results ensure that, for all n large enough, we have λ1(−n−1∇2`n(θ̂n)) ≥ λ1(J?)/2 > 0 and

π(θ̂n) ≤ π(θ?) + 1, which leads to

0 ≤ I
(1,1,1,2)
n,δ ≤

∫
‖h‖>δ

√
n

(π (θ?) + 1) exp
(
−λ1(J?)‖h‖2

4

)
dh

≤
∫
Rd

(π (θ?) + 1) exp
(
−λ1(J?)‖h‖2

4

)
1(δ
√
n ,+∞)(h) dh (3.20)

for all n large enough. The integrand in (3.20) converges to 0 and is dominated by the

integrable function h 7→ (π(θ?) + 1) exp(−λ1(J?)‖h‖2/4), so that using the dominated

convergence theorem leads to

I
(1,1,1,2)
n,δ

P?−a.s.−−−−→
n→+∞

0 (3.21)

for all δ > 0. By combining (3.19) with (3.21), we finally get

I
(1,1,1)
n,δ

P?−a.s.−−−−→
n→+∞

0 (3.22)

for all δ > 0, which takes care of the first term in (3.16).

Let’s now look at the second term I
(1,1,2)
n,δ in (3.16). By the triangle inequality, we have

I
(1,1,2)
n,δ ≤ I

(1,1,2,1)
n,δ + I

(1,1,2,2)
n,δ (3.23)
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where

I
(1,1,2,1)
n,δ =

∫
‖h‖≤δ

√
n

∣∣∣∣∣π
(
θ̂n + h√

n

)
− π

(
θ̂n
)∣∣∣∣∣ exp

(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)
dh,

I
(1,1,2,2)
n,δ =

∫
‖h‖≤δ

√
n

π(θ̂n)

∣∣∣∣∣∣exp
(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)
− exp

−hT [− 1
n
∇2`n(θ̂n)]h

2

∣∣∣∣∣∣ dh.
By Assumption A7, there exists a neighborhood of θ? on which θ 7→ π(θ) is continuous. By

definition, this neighborhood contains a closed ball B̄(θ?, R) of radius R around θ?, on which

π is continuous, so a fortiori uniformly continuous by the Heine-Cantor theorem.

Let’s fix any arbitrary ε ∈ (0, 1).

By uniform continuity, there exists δ?ε ∈ (0, R) such that

sup
‖θ−θ?‖≤δ?ε

|π(θ)− π(θ?)| < ε. (3.24)

By Assumption A4, we have ‖θ̂n − θ?‖ < δ?ε/2 for all n large enough. For all δε ∈ (0, δ?ε/2],

the triangle inequality guarantees that {‖θ − θ̂n‖ < δε} ⊆ {‖θ − θ?‖ < δ?ε} for all n large

enough. By using the triangle inequality again, we get

sup
‖h‖≤δε

√
n

∣∣∣∣∣π
(
θ̂n + h√

n

)
− π

(
θ̂n
)∣∣∣∣∣ ≤ 2 sup

‖θ−θ̂n‖≤δε
|π(θ)− π(θ?)|

≤ 2 sup
‖θ−θ?‖≤δ?ε

|π(θ)− π(θ?)|

< 2 ε (3.25)

for all n large enough. This gives us

0 ≤ I
(1,1,2,1)
n,δε

≤ 2 ε
∫

‖h‖≤δε
√
n

exp
(
`n

(
θ̂n + h√

n

)
− `n(θ̂n)

)
dh (3.26)

for all δε ∈ (0, δ?ε/2] and all n large enough.

Recall that J? > 0, i.e. λ1(J?) > 0, so from here onward we may restrict ourselves to all ε

satisfying 0 < ε < λ1(J?)/2. By Assumption A6, there exists δJ?ε > 0 such that

sup
‖θ−θ?‖≤δJ?ε

∥∥∥∥ 1
n
∇2`n(θ) + J?

∥∥∥∥ < ε (3.27)
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for all n large enough. Assumption A4 implies that ‖θ̂n − θ?‖ < δJ
?

ε /2 for all n large enough.

For all δε ∈ (0, δJ?ε /2], we have {‖θ− θ̂n‖ < δε} ⊆ {‖θ− θ?‖ < δJ
?

ε } for all n large enough, by

the triangle inequality. By proceeding in the same way as in (3.25), we get

sup
‖θ−θ̂n‖≤δε

∥∥∥∥ 1
n
∇2`n(θ)− 1

n
∇2`n(θ̂n)

∥∥∥∥ ≤ 2 sup
‖θ−θ?‖≤δJ?ε

∥∥∥∥ 1
n
∇2`n(θ) + J?

∥∥∥∥ < 2 ε (3.28)

for all δε ∈ (0, δJ?ε /2] and all n large enough. By using again Assumption A6, we may choose

δε ∈ (0,min(δ?ε/2, δJ
?

ε /2)) small enough so that θ 7→ `n(θ) is twice continuously differentiable

on {‖θ − θ̂n‖ < δε}. For all h ∈ {‖h‖ ≤ δε
√
n}, Taylor’s theorem with ∇`n(θ̂n) = 0 yields

`n

(
θ̂n + h√

n

)
− `n(θ̂n) = −

hT [− 1
n
∇2`n(θ̃n)]h

2 (3.29)

where θ̃n = θ̂n + γ h/
√
n for some γ ∈ [0, 1], so that ‖θ̃n − θ̂n‖ < δε. This also implies that

‖θ̃n − θ?‖ < ‖θ̃n − θ̂n‖+ ‖θ̂n − θ?‖ < δJ
?

ε for all n large enough, so by (3.27) we get

λ1

(
− 1
n
∇2`n(θ̃n)

)
>

λ1(J?)
2 (3.30)

for all n large enough. By plugging (3.29) and (3.30) back into (3.26), we get

I
(1,1,2,1)
n,δε

≤ 2 ε
∫

‖h‖≤δε
√
n

exp
(
−λ1(J?)‖h‖2

4

)
dh

≤ 2 ε
(

2
λ1(J?)

)d/2 ∫
Rd

exp
(
−‖z‖

2

2

)
dz

≤ 2
(

4π
λ1(J?)

)d/2
ε (3.31)

for all n large enough. Similarly, equation (3.29) can be rewritten as

`n

(
θ̂n + h√

n

)
− `n(θ̂n) = −

hT [− 1
n
∇2`n(θ̂n)]h

2 +Rn(h) (3.32)

with

Rn(h) =
hT [ 1

n
∇2`n(θ̃n)− 1

n
∇2`n(θ̂n)]h

2 .
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Since ‖θ̃n − θ̂n‖ ≤ ‖h‖/
√
n ≤ δε, equation (3.28) implies that

sup
‖h‖≤δε

√
n

|Rn(h)| ≤ ‖h‖2 ε (3.33)

for all n large enough. By combining (3.24), (3.27), (3.32), (3.33), and by using the inequality

| exp(x)− 1| ≤ |x| exp(|x|) for all x ∈ R, we obtain

I
(1,1,2,2)
n,δε

≤ (π(θ?) + 1)
∫

‖h‖≤δε
√
n

∣∣∣∣∣∣exp
−hT [− 1

n
∇2`n(θ̂n)]h

2

(exp (Rn(h))− 1
)∣∣∣∣∣∣ dh

≤ (π(θ?) + 1) ε
∫

‖h‖≤δε
√
n

exp
−hT [− 1

n
∇2`n(θ̂n)− εId]h

2

 ‖h‖2 dh

≤ (π(θ?) + 1) ε
∫

‖h‖≤δε
√
n

exp
(
−λ1(J?)‖h‖2

4

)
‖h‖2 dh

≤ (π(θ?) + 1) ε
∫
Rd

exp
(
−λ1(J?)‖h‖2

4

)
‖h‖2 dh

≤ (π(θ?) + 1) ε
(

2
λ1(J?)

)1+d/2 ∫
Rd

exp
(
−‖z‖

2

2

)
‖z‖2 dz

≤ (π(θ?) + 1)
(

2
λ1(J?)

)1+d/2

d (2π)d/2 ε (3.34)

for all n large enough.

Let us introduce the strictly positive constant

cJ
?

d = min

λ1(J?)
2 ,

2
(

4π
λ1(J?)

)d/2
+ (π(θ?) + 1)

(
2

λ1(J?)

)1+d/2

d (2π)d/2
−1


which does not depend on ε. By plugging (3.31) and (3.34) back into (3.23), we conclude

that for all ε ∈ (0, cJ?d ), there exists δε > 0 such that

0 ≤ I
(1,1,2)
n,δε

< ε (3.35)

for all n large enough. Since δε > 0, equation (3.22) also readily yields

0 ≤ I
(1,1,1)
n,δε

< ε (3.36)
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for all n large enough. By plugging (3.35) and (3.36) back into (3.16), we can conclude that

for all ε ∈ (0, cJ?d ) and its associated δε > 0, there exists Nε ∈ N such that we have

0 ≤ I(1,1)
n < I

(1,1,1)
n,δε

+ I
(1,1,2)
n,δε

< 2 ε

for all n > Nε. Since this holds for every arbitrary ε ∈ (0, cJ?d ), we obtain

I(1,1)
n

P?−a.s.−−−−→
n→+∞

0.

which establishes (3.15), and concludes the proof of Theorem 12.

3.5 Sufficient conditions in state-space models

Assumptions A1 to A6 describe general phenomena about the log-likelihood function and

the observed Fisher information. These phenomena are not particular to state-space models

and provably occur in a wide variety of settings. Our main challenge is to provide a set of

verifiable and desirably weak conditions on the state-space model — in the spirit of Douc

and Moulines (2012) — under which Assumptions A1 to A6 can be proved to hold.

Before stating the conditions, we introduce some additional objects specific to state-

space models. For ease of analogy in the later discussions, we deliberately depart from the

notations used in the previous chapters to adopt the same conventions as the ones in Douc

and Moulines (2012). We start the indexing at time 0 for the processes (Xi)i∈N and (Yi)i∈N

of latent states living in X ⊆ Rdx , equipped with its Borel σ-algebra X , and observations

living in Y ⊆ Rdy , equipped with its Borel σ-algebra Y. We denote the initial distribution

of the latent Markov chain by µ, its transition kernel by Qθ : X × X → [0, 1] with density

qθ, and the observation distribution by Gθ(·|x) : Y → [0, 1] with density y 7→ gθ(y|x). These

densities are with respect to some reference measure, typically the Lebesgue measure. When

the context is clear, we use the shorthand notation gθ,i(x) = gθ(yi|x). All the previous

model components are parametrized by some θ ∈ T ⊆ Rdθ . For n ∈ N∗ and i ∈ J0, n − 1K,
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we use Eθ,µ [f(X0:n−1) | y0:n−1] to denote the induced expectation of f(X0:n−1) conditional

on some θ and realized observations y0:n−1 ∈ Yn, given an initial distribution µ for X0.

Under stationarity assumptions, we will artificially extend the processes (Xi)i∈N and (Yi)i∈N

to allow for negative indexes i ∈ Z. We use the convention that sums and products over

empty sets of indexes are respectively equal to 0 and 1.

Recall that any measure ν on X induces a real-valued map on the space of suitably

integrable functions f via ν(f) =
∫
X f(x)ν(dx). On the other hand, an integral kernel

K : X× X → R+ induces an operator on the space of measures, as well as an operator on

the space of suitably integrable functions, i.e. for all measures µ on X and all integrable

functions f : X → R, we can define the measure µK for all events A ∈ X by

(µK)(A) =
∫
X
µ(dx)K(x,A) (3.37)

and the function Kf for all x ∈ X by

(Kf)(x) =
∫
X
K(x, dx′)f(x′) = (δxK)(f).

For all (θ, y0) ∈ T× Y and suitably integrable non-negative functions ϕ : X× X→ R+, we

define the unnormalized kernel Lϕθ 〈y0〉 : X × X → [0, 1] by

Lϕθ 〈y0〉(x0, A) =
∫
1A(x1)ϕ(x0, x1) gθ(y0|x0)Qθ(x0, dx1). (3.38)

We will use the shorthand notation Lθ〈y0〉 = L
1X×X
θ 〈y0〉, so that for all (x0, A) ∈ X×X , we have

Lθ〈y0〉(x0, A) =
∫
1A(x1) gθ(y0|x0)Qθ(x0, dx1). (3.39)

For all (m,n) ∈ N × N∗ and (θ, y−m:n−1) ∈ T × Ym+n, we define the unnormalized kernel

Lθ〈y−m:n−1〉 : X×X → [0, 1] as the composition of the kernels Lθ〈yl〉 for l ∈ J−m,n− 1K i.e.

Lθ〈y−m:n−1〉(x−m, A) =
∫
1A(xn)

n−1∏
l=−m

[gθ(yl|xl)Qθ(xl, dxl+1)] (3.40)

for all (x−m, A) ∈ X×X , with the convention Lθ〈y−m:n−1〉(x−m, A) = δx−m(A) if n−1 < −m.
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3.5.1 Convergence of the log-likelihood

The convergence of the log-likelihood function to a suitable limit (Assumption A2) has

been established for general and possibly misspecified state-space models by Douc and

Moulines (2012), using the following conditions.

Condition C1. The process (Yt)t∈N is strongly stationary and ergodic.

Condition C2. The parameter space T is a compact metric space.

Condition C3. There exists r ∈ N∗ and a measurable set K ⊆ Yr such that

(i) P?(Y0:r−1 ∈ K) > 2/3.

(ii) For all η > 0, there exists an r-local Doeblin set C ∈ X such that, for all θ ∈ T and all

y0:r−1 ∈ K, we have

sup
x∈Cc

Lθ〈y0:r−1〉(x,X) ≤ η sup
x∈X

Lθ〈y0:r−1〉(x,X) < +∞

and

inf
y0:r−1∈K

ε−C(y0:r−1)
ε+C(y0:r−1) > 0

where ε+C : Yr → R+ and ε−C : Yr → R+ are positive functions coming from the definition

of the r-local Doeblin set C. In other words, there exists a family of probability measures

(λCθ,y) and positive functions (ϕCθ,y), indexed by θ ∈ T and y = y0:r−1 ∈ Yr, such that

λCθ,y(C) = 1 for all (θ, y) ∈ T× Yr, and such that we have

ε−C(y)ϕCθ,y(x)λCθ,y(A) ≤ Lθ〈y0:r−1〉(x,A ∩ C) ≤ ε+C(y)ϕCθ,y(x)λCθ,y(A)

for all x ∈ C, all A ∈ X , all θ ∈ T, and all y = y0:r−1 ∈ Yr.

(iii) There exists a set D ∈ X such that

E?
[
log− inf

θ∈T
inf
x∈D

Lθ〈Y0:r−1〉(x,D)
]
< +∞.
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Condition C4. For all θ ∈ T and all (x, y) ∈ X× Y, we have gθ(y|x) > 0 and

E?
[
log+ sup

θ∈T
sup
x∈X

gθ(Y0|x)
]
< +∞.

Condition C5. There exists N ∈ N∗ such that for all x ∈ X and all n ≥ N , the function

θ 7→ p(Y0:n−1|X0 = x, θ) is continuous on T, P?-almost surely.

Conditions C3, C4, and C5 respectively correspond to Assumptions (A1), (A2), and

(A3) in Douc and Moulines (2012). Intuitions and discussions about these conditions can be

found in their Remarks 1 to 6. In particular, these conditions are weaker than the strong

mixing assumptions that are traditionally used in such settings and that we used to prove

the consistency of the H-score in Chapter 1 (see Condition C9 in Appendix B.5.2.3). The

latter are too restrictive to be satisfied even by simple linear Gaussian state-space models,

whereas the former have been proved to hold for a reasonably wide class of models (Section 4

in Douc and Moulines, 2012) including finite states or linear Gaussian state-space models,

as well as particular instances of stochastic volatility models.

For D ∈ X and r ∈ N∗ as described in Condition C3, we may consider a subsetM(D, r)

from the space P(X,X ) of probability measures on (X,X ), defined as

M(D, r) =
{
µ ∈ P(X,X ) : ∀u ∈ J1, rK, E?

[
log− inf

θ∈T
µLθ〈Y0:u−1〉1D

]
< +∞

}
. (3.41)

Most of the subsequent results will be derived for initial distributions of the latent Markov chain

belonging to such a subset. For a given initial distribution µ, explicit sufficient conditions can

be derived to ensure µ ∈M(D, r) (Proposition 3 and Remark 8 in Douc and Moulines, 2012).

Remark 13. If Condition C3 holds with r = 1, then for all probability measures µ ∈ P(X,X ),

having µ(D) > 0 is sufficient to guarantee µ ∈ M(D, r). Indeed, the non-negativity of the

integrand ensures that, for all µ ∈ P(X,X ), we have

µLθ〈Y0〉1D =
∫
X
µ(dx)Lθ〈Y0〉(x,D) ≥ µ(D) inf

x∈D
Lθ〈Y0〉(x,D).
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Condition C3 (iii) implies that infx∈D Lθ〈Y0〉(x,D) > infθ∈T infx∈D Lθ〈Y0〉(x,D) > 0 (as

explained in Remark 14), so that if µ(D) > 0, then we have

inf
θ∈T

µLθ〈Y0〉1D ≥ µ(D) inf
θ∈T

inf
x∈D

Lθ〈Y0〉(x,D) > 0. (3.42)

The function u 7→ log−(u) = (| log(u)| − log(u))/2 is non-increasing on R∗+ and satisfies

log−(uv) ≤ log−(u) + log−(v) for all (u, v) ∈ (R∗+)2, hence equation (3.42) implies

E?
[
log− inf

θ∈T
µLθ〈Y0〉1D

]
≤ log−

(
µ(D)

)
+ E?

[
log− inf

θ∈T
inf
x∈D

Lθ〈Y0〉(x,D)
]
.

Since log−(µ(D)) < +∞ and E?[log− infθ∈T infx∈D Lθ〈Y0〉(x,D)] < +∞ thanks to µ(D) > 0

and Condition C3 (iii), we finally get E?
[
log− infθ∈T µLθ〈Y0〉1D

]
< +∞ i.e. µ ∈ M(D, r).

Therefore, we indeed have {µ ∈ P(X,X ) : µ(D) > 0} ⊆ M(D, r) if r = 1 in Condition C3.

3.5.2 Existence and uniqueness of θ?

Under Conditions C1 to C5, the limit ` of the log-likelihood function n−1`n is upper semi-

continuous on T (Theorem 2 in Douc and Moulines, 2012), which guarantees the existence and

non-emptiness of the set Θ? = arg maxθ∈T `(θ), thanks to the compactness of T. Guaranteeing

the uniqueness of the maximizer i.e. Θ? = {θ?} requires more subtle considerations. This

has been achieved by adding further identifiability restrictions — e.g. Section 5 of Douc

et al. (2004), or Lemma 13.10 and Proposition 13.13 of Douc et al. (2014) — albeit for

well-specified state-space models satisfying strong mixing conditions. As far as we know,

the uniqueness of θ? for misspecified models with less restrictive conditions remains to be

investigated. However, we might not necessarily require the uniqueness of the maximizer

of `: by having only Θ? 6= ∅ instead of Θ? = {θ?} in Assumption A3, and by replacing

‖θ̂n − θ?‖ with d(θ̂n,Θ?) = infθ?∈Θ? ‖θ̂n − θ?‖ in Assumption A4, we could still hope to

prove a notion of posterior consistency redefined as

Π
 ⋃
θ?∈Θ?

Uθ?

∣∣∣∣∣∣ Y0:n−1

 P?−a.s.−−−−→
n→+∞

1
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for all unions of neighborhoods Uθ? of θ? ∈ Θ?. In the rest of this chapter, we will assume

that Θ? = {θ?} for simplicity.

3.5.3 Consistency of the MLE

Under conditions C1 to C5, Theorem 2 in Douc and Moulines (2012) proves that

d(θ̂n,Θ?) P?−a.s.−−−−→
n→+∞

0

for all initial distribution µ ∈ M(D, r) of the latent Markov chain, where the set of

distributions M(D, r) is defined as in (3.41). When Assumption A3 holds, we have

d(θ̂n,Θ?) = ‖θ̂n − θ?‖ so that the previous statement reduces to Assumption A4.

3.5.4 Well-separation of θ?

Under Conditions C1 to C5, the proof of Theorem 12 in Douc and Moulines (2012, p.2725)

proceeds with batches Zk = Ykr:(k+1)r−1 ∈ Yr of r successive observations to establish

lim
n→+∞

(
sup
θ∈Tδ

1
n

log pθµ(Z0:n−1)
)
< E?

[
log pθ?(Z0|Z−∞:−1)

]
(3.43)

for all µ ∈M(D, r). Most terms in (3.43) are the fruits of non-trivial derivations: p θµ(Z0:n−1)

corresponds to p(Y0:(n−1)r |θ) with µ as initial distribution for the latent states, pθ(Z0|Z−∞:−1)

denotes the P?-almost sure limit — which can be proved to exist with a value not depending

on the initial distribution µ (Douc and Moulines, 2012, Corollary 9) — of the sequence

(p θµ(Z0 |Z−m:−1))m∈N as m→ +∞, and Tδ is defined as {θ ∈ T : d(θ,Θ?
r) ≥ δ} for all δ > 0

with Θ?
r = arg maxθ∈T E?

[
log pθ(Z0|Z−∞:−1)

]
. In the particular case where C3 holds with

r = 1, if Assumption A3 holds, then Θ?
r = {θ?} and equation (3.43) simplifies to

lim
n→+∞

(
sup

‖θ−θ?‖≥δ

1
n

log pθµ(Y0:n−1)
)
< E?

[
log pθ?(Y0|Y−∞:−1)

]
for all δ > 0 and all initial distributions µ ∈ M(D, r). This inequality precisely implies

the well-separation of the mode θ? (Assumption A5). For a generic r ∈ N∗, the analysis
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might require more technical precautions but should not be fundamentally different. Without

much loss of generality, we will always assume that r = 1 when referring to Condition C3

in the following sections, unless required otherwise.

3.5.5 Uniform convergence of the observed Fisher information

Out of all the assumptions listed in Section 3.2, the uniform convergence of the observed

Fisher information around θ? (Assumption A6 or its weaker form Ã6) is arguably the most

elusive. Providing additional conditions that provably ensure such a control over the log-

likelihood’s Hessian for possibly misspecified state-space models, while maintaining the

practical applicability of Conditions C3 to C5, constitutes the main obstacle to overcome

and would be the major part of our contribution. This will be the focus of the next section.

3.6 Controlling the Hessian of the log-likelihood

In this section, we propose further technical conditions and combine them with C1 to C5

in an attempt to guarantee Assumptions A6 or Ã6. Our current work falls short of a

complete proof at the time of writing, but it points out relevant intricacies and suggests

possible research directions to explore.

3.6.1 Additional notations and conditions

Using the objects introduced in Section 3.5, we have

µLθ〈y−m:n−1〉(h) =
∫
h(xn)µ(dx−m)

n−1∏
l=−m

[gθ(yl|xl)Qθ(xl, dxl+1)] (3.44)

for all probability measures µ and integrable functions h : X→ R. We denote by µθ,−m:n−1

the normalized version of the measure µLθ〈y−m:n−1〉, defined for all A ∈ X as

µθ,−m:n−1(A) = µLθ〈y−m:n−1〉(A)
µLθ〈y−m:n−1〉(X)

(3.45)
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with the shorthand notation µθ,−m = µθ,−m:−m. For two functions f : X→ R and h : Y→ R,

we define the function f ⊗ h : X× Y→ R as (f ⊗ h)(x, y) = f(x)h(y) for all (x, y) ∈ X× Y.

For two measures η and µ, let η ⊗ µ denote their product measure. We define the joint

kernel L̄θ〈y−m:n−1〉 from the product space X × X to X × X by

L̄θ〈y−m:n−1〉(x̄, Ā) = Lθ〈y−m:n−1〉(x(1), A(1)) . Lθ〈y−m:n−1〉(x(2), A(2)) (3.46)

for all x̄ = (x(1), x(2)) ∈ X × X and Ā = (A(1) × A(2)) ∈ X × X . For all y−m:n−1 ∈ Ym+n

and i ∈ J−m,nK, we define the function hθ,i:n : X → R+ as

hθ,i:n(x) = Lθ〈yi:n−1〉(x,X). (3.47)

In other words, the value of hθ,i:n(x) is equal to the normalizing constant of the predictive

density p(dxn|yi:n−1, θ) conditional on Xi = x, so that hθ,i:n(x) = p(yi:n−1|Xi = x, θ), which

also equals the normalizing constant of the filtering density p(dxn−1|yi:n−1, θ) at time n− 1.

From this definition, it follows that

hθ,i:n(x) = δxLθ〈yi:n−1〉(1X) and hθ,i:n+1(x) = δxLθ〈yi:n−1〉(gθ,n) (3.48)

which also implies the recursive relationship

hθ,i:n = Lθ〈yi〉hθ,i+1:n. (3.49)

The dependence of hθ,i:n on the observations is kept implicit in the notation for better

readability. Using the previous notations, one can notice that, for i < n, we have

hθ,i:n(x) =
∫
X
δx(dxi)

n−1∏
l=i

[
gθ(yl|xl)Qθ(xl, dxl+1)

]

= gθ(yi|x)
∫
X
Qθ(x, dxi+1)

n−1∏
l=i+1

[
gθ(yl|xl)Qθ(xl, dxl+1)

]

= gθ(yi|x)
∫
X
Qθ(x, dxi+1)

∫
X
δxi+1(dx̃i+1)

n−1∏
l=i+1

[
gθ(yl|x̃l)Qθ(x̃l, dx̃l+1)

]
= gθ(yi|x)

∫
X
Qθ(x, dxi+1)Lθ〈yi+1:n−1〉(xi+1,X)

= gθ,i(x) . (Qθ hθ,i+1:n)(x)
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which can be written more concisely as

hθ,i:n = (gθ,i)(Qθ hθ,i+1:n). (3.50)

Using the previous notations, we have

Eθ,µ [ϕ(Xi−1, Xi) | y−m:n−1]

=
∫
X ϕ(xi−1, xi)µ(dx−m)∏n−1

l=−m

[
gθ(yl|xl)Qθ(xl, dxl+1)

]
∫
X µ(dx−m)∏n−1

l=−m [gθ(yl|xl)Qθ(xl, dxl+1)]

=
∫
X(µLθ〈y−m:i−2〉)(dxi−1)ϕ(xi−1, xi)gθ(yi−1|xi−1)Qθ(xi−1, dxi)hθ,i:n(xi)

µLθ〈y−m:i−2〉 (hθ,i−1:n)

=
∫
X[
∫
X L

ϕ
θ 〈yi−1〉(xi−1, dxi)hθ,i:n(xi)](µLθ〈y−m:i−2〉)(dxi−1)

µLθ〈y−m:i−2〉 (hθ,i−1:n)

=
∫
X[(Lϕθ 〈yi−1〉hθ,i:n)(xi−1)](µLθ〈y−m:i−2〉)(dxi−1)

µLθ〈y−m:i−2〉 (hθ,i−1:n)

which leads to

Eθ,µ [ϕ(Xi−1, Xi) | y−m:n−1] = µLθ〈y−m:i−2〉(Lϕθ 〈yi−1〉hθ,i:n)
µLθ〈y−m:i−2〉 (hθ,i−1:n)

(3.51)

for all i ∈ J−m,nK and all suitably integrable non-negative functions ϕ : X× X→ R+.

In the following sections, we place ourselves by default under Conditions C1 to C5,

unless specified otherwise. We will also assume sufficient regularity conditions to swap

derivation with integration signs, thus allowing the use of Fisher and Louis identities. Such

conditions can be found in Proposition 10.1.6 of Cappé et al. (2005) and are also discussed

in Section 6.1 of Douc et al. (2004).

Remark 14. For any random variable Z, if E?[|Z|] < +∞ then |Z| is P?-almost surely finite.

Thus, Assumptions C3 (iii) and C4 respectively imply that, P?-almost surely, we have

inf
θ∈T

inf
x∈D

Lθ〈Y0:r−1〉(x,D) > 0 and sup
θ∈T

sup
x∈X

gθ(Y0|x) < +∞.
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Under stationarity, the latter implies supθ∈T supx∈X gθ(Yl|x) < +∞ for all l ∈ Z, P?-almost

surely. As a consequence we have supθ∈T ‖Lθ〈Yl〉(·,X)‖∞ ≤ supθ∈T supx∈X gθ(Yl|x) < +∞

for all l ∈ Z, P?-almost surely. For any function ϕθ : X2 → R+ satisfying the condition

E?[log+(supθ∈T sup(x0,x1)∈X2 ϕθ(x0, x1)gθ(Y1|x1))] < +∞, we may define

Gl = sup
θ∈T

sup
x∈X

gθ(Yl|x), Gϕ
l = sup

θ∈T
sup

(x0,x1)∈X2
ϕθ(x0, x1)gθ(Yl|x1), Fl = inf

θ∈T
inf
x∈D

Lθ〈Yl〉(x,D),

and

Vl = Gl

Fl
, V ϕ

l = Gϕ
l

Fl
, Ṽl = max(Vl, V ϕ

l ),

which are P?-almost surely positive and finite. The variable Vl essentially plays the role of Dz

in equation (46) of Douc and Moulines (2012).

3.6.2 Main steps and results

For all i ∈ Z, we define the functions φ(1)
θ,i : X2 → Rdθ and φ(2)

θ,i : X2 → Rdθ×dθ as

φ
(1)
θ,i (Xi−1, Xi) = ∇θ log

(
qθ(Xi−1, Xi)gθ(yi|Xi)

)
φ

(2)
θ,i (Xi−1, Xi) = ∇2

θ log
(
qθ(Xi−1, Xi)gθ(yi|Xi)

)

with φθ,0(X−1, X0) = ∇θ log(gθ(y0|X0)) and ϕθ,0(X−1, X0) = ∇2
θ log(gθ(y0|X0)) by convention.

Using Louis identity, as stated e.g. in Proposition 10.1.6 from Cappé et al. (2005) and

equation (22) from Douc et al. (2004), we may write

1
n
∇2`n(θ) = 1

n
Eθ,µ

[
n−1∑
i=0

φ
(2)
θ,i (Xi−1, Xi)

∣∣∣∣∣ y0:n−1

]
+ 1
n
Varθ,µ

[
n−1∑
i=0

φ
(1)
θ,i (Xi−1, Xi)

∣∣∣∣∣ y0:n−1

]
(3.52)

Following equations (22) to (24) from Douc et al. (2004), we define, for any collection

ϕ = (ϕi)i∈Z of suitably integrable functions on X2, the differences

∆E,θ
k,m,µ(ϕ) = Eθ,µ

 k∑
i=−m

ϕi(Xi−1, Xi)

∣∣∣∣∣∣ y−m:k

− Eθ,µ

 k−1∑
i=−m

ϕi(Xi−1, Xi)

∣∣∣∣∣∣ y−m:k−1


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and

∆V,θ
k,m,µ(ϕ) = Varθ,µ

 k∑
i=−m

ϕi(Xi−1, Xi)

∣∣∣∣∣∣ y−m:k

− Varθ,µ

 k−1∑
i=−m

ϕi(Xi−1, Xi)

∣∣∣∣∣∣ y−m:k−1


so that we can use telescopic sums to rewrite (3.52) as

1
n
∇2`n(θ) = 1

n

n−1∑
k=0

∆E,θ
k,0,µ

(
φ

(2)
θ

)
+ 1

n

n−1∑
k=0

∆V,θ
k,0,µ

(
φ

(1)
θ

)
. (3.53)

Following the line of reasoning in Douc et al. (2004, cf. equations (22) to (24), p.2276),

we aim to prove the existence of P?-almost sure limits for the sequences (∆E,θ
k,m,µ(ϕθ))m∈N

and (∆V,θ
k,m,µ(ϕθ))m∈N as m→ +∞, respectively denoted by ∆E,θ

k,∞(φ(2)
θ ) and ∆V,θ

k,∞(φ(1)
θ ), and

provably not depending on the initial distribution µ. We would then respectively approximate

n−1∑n−1
k=0 ∆E,θ

k,0,µ(φ(2)
θ ) and n−1∑n−1

k=0 ∆V,θ
k,0,µ(φ(1)

θ ) by the stationary analogs n−1∑n−1
k=0 ∆E,θ

k,∞(φ(2)
θ )

and n−1∑n−1
k=0 ∆V,θ

k,∞(φ(1)
θ ), to which ergodic theorems would be applied to obtain the limits

E?[∆E,θ
0,∞(φ(2)

θ )] and E?[∆V,θ
0,∞(φ(1)

θ )]. Provided that these convergences are uniform in a

neighborhood of θ?, these results would readily translate into a uniform approximation of

the Hessian −n−1∇2`n(θ) by the positive definite limit J? = E?[∆E,θ?
0,∞ (φ(2)

θ? )] + E?[∆V,θ?
0,∞ (φ(1)

θ? )]

in a suitable neighborhood of θ?, and Assumption A6 would thus be ensured.

3.6.2.1 First term: sum of smoothing expectations

The goal here is to prove that the first term in (3.53) given by

1
n

n−1∑
k=0

∆E,θ
k,0,µ

(
φ

(2)
θ

)
(3.54)

converges P?-almost surely to some limit E?[∆E,θ
0,∞(φ(2)

θ )] not depending on the initial dis-

tribution µ, with a uniform control in the neighborhood of θ?. We essentially strive for a

generalization of Proposition 4 in Douc et al. (2004) to misspecified models, without strong

mixing assumptions nor the boundedness of φ(2)
θ . This can be envisioned by:
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1. Translating the forgetting properties of the latent Markov chain (Lemma 17) into forgetting

properties for sequences (∆E,θ
k,m,µ(ϕθ))m∈N of conditional expectations (Lemma 20).

2. Using these forgetting properties to argue that (∆E,θ
k,m,µ(ϕθ))m∈N is a Cauchy sequence

converging to some limit ∆E,θ
k,∞(ϕθ) not depending on the initial distribution µ.

3. Approximating n−1∑n−1
k=0 ∆E,θ

k,0,µ(ϕθ) by n−1∑n−1
k=0 ∆E,θ

k,∞(ϕθ), and proving uniform continu-

ity results to approximate n−1∑n−1
k=0 ∆E,θ

k,∞(ϕθ) uniformly by n−1∑n−1
k=0 ∆E,θ?

k,∞(ϕθ?) in the

neighborhood of θ?.

4. Using ergodic theorems to justify the convergence of n−1∑n−1
k=0 ∆E,θ?

k,∞(ϕθ?) to E?[∆E,θ?
0,∞ (ϕθ?)].

5. Piecing all the previous results together to approximate n−1∑n−1
k=0 ∆E,θ

k,0,µ(ϕθ) uniformly by

E?[∆E,θ?
0,∞ (ϕθ?)] in the neighborhood of θ?, and apply the result to ϕθ = φ

(2)
θ .

Remark 15. The vector-valued φ
(2)
θ,i : X2 → Rdθ can be broken down into its real-valued

component functions, which can in turn be decomposed into their positive and negative parts,

i.e. φ(2)
θ,i = (φ(2)

θ,i,1, ..., φ
(2)
θ,i,d)> with φ(2)

θ,i,j = φ
(2) +
θ,i,j − φ

(2)−
θ,i,j for j ∈ J1, d K, so that it will be enough

to focus on controlling quantities of the forms

∣∣∣Eθ,µ[ϕθ(Xi−1, Xi) | y−m:k]− Eθ,µ′ [ϕθ(Xi−1, Xi) | y−m:k]
∣∣∣

and

∣∣∣Eθ,µ[ϕθ(Xi−1, Xi) | y−m:k]− Eθ,µ[ϕθ(Xi−1, Xi) | y−m:k−1]
∣∣∣

for initial distributions µ, µ′, and suitably integrable non-negative functions ϕθ : X2 → R+.

We now present several intermediary results that will bring us closer to obtaining the uniform

convergence of n−1∑n−1
k=0 ∆E,θ

k,0,µ(ϕθ) to E?[∆E,θ?
0,∞ (ϕθ?)] in the neighborhood of θ?, for suitable

test functions ϕ : X2 → R+. The proofs of these results are postponed to Section 3.6.3.
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Lemma 16. Assume that Conditions C1 to C4 hold. Then, for all probability measures µ on

X satisfying µ(D) > 0, all (γ−, γ+) ∈ (0, 1)2 with γ− < γ+, and all l0 ∈ N with l0 ≥ 1, there

exists a P?-almost surely finite random variable Z > 0 such that, for all θ ∈ T, if

1
k1 + k2 + 1

k2∑
l=−k1

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)
(3.55)

for all (k1, k2) ∈ N2 with k1 ≥ l0 or k2 ≥ l0, then we have

µθ,−m:n−1(D) ≥ µ(D)Z (3.56)

for all (m,n) ∈ N2 with n ≥ 1, where D is the set described in Assumption C3 (iii).

Lemma 16 provides a uniform lower bound on µθ,−m:n−1(D) for any (m,n) ∈ N2. Although

the random variable Z technically depends on l0, this will be mitigated by the almost sure

existence of some large enough L0, independent of any index, for which the condition in

(3.55) will hold P∗-almost surely. The next lemma is a restatement of Proposition 5 from

Douc and Moulines (2012) for possibly unbounded integrands.

Lemma 17. Assume that Conditions C1 to C4 hold. Then, for all probability measures µ and

µ′ on X, all non-negative functions f : X→ R+ and h : X→ R+, and all (γ−, γ+) ∈ (0, 1)2

with γ− < γ+, there exists ρ ∈ (0, 1) such that, for all η ∈ (0, 1), we may find η̃ ∈ (0, 1) such

that, for all θ ∈ T, for all (m, i) ∈ N 2 with i ≥ 1, all y−m:i−1 ∈ Ym+i, if

1
m+ i

i−1∑
l=−m

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)
, (3.57)

then we have

∣∣∣(µ⊗ µ′)L̄θ〈y−m:i−1〉(f ⊗ h− h⊗ f)
∣∣∣

≤ ρm+i(µ⊗ µ′)L̄θ〈y−m:i−1〉 (f ⊗ h+ h⊗ f) (3.58)

+ ηm+i
∫

(µ⊗ µ′)(dx̄−m)
 i−1∏
l=−m

L̄θ〈yl〉(x̄l, dx̄l+1)
η̃ 1C̄c (x̄l)1K(yl)

 (f ⊗ h+ h⊗ f) (x̄i).
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In particular, if f and h are bounded, we have

|(µ⊗ µ′) L̄θ〈y−m:i−1〉(f ⊗ h− h⊗ f)
∣∣∣

≤ ρm+i(µ⊗ µ′)L̄θ〈y−m:i−1〉 (f ⊗ h+ h⊗ f) (3.59)

+ ηm+i

 i−1∏
l=−m

‖Lθ〈yl〉(•,X)‖2
∞

 2 ‖f‖∞ ‖h‖∞ .

Lemma 17 can be interpreted as a standard forgetting property. It is a consequence of

having the latent Markov chain forget its initial distribution exponentially fast as the process

evolves. The following lemma provides an upper bound on conditional expectations of the

form Eθ,µ [ϕθ(Xi−1, Xi) | y−m:n−1], uniformly in (m,n) for any fixed i ∈ J−m + 1, nK.

Lemma 18. Assume that Conditions C1 to C4 hold. For all probability measures µ on X

such that µ(D) > 0, all (i, l0) ∈ (N∗)2 and (γ−, γ+) ∈ (0, 1)2 with γ− < γ+, there exists a

P?-almost surely finite random variable Zi,l0 > 0 such that, for all θ ∈ T and all non-negative

functions ϕθ : X2 → R+, if

1
k1 + k2 + 1

k2∑
l=−k1

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)
, (3.60)

for all (k1, k2) ∈ N2 with k1 ≥ l0 or k2 ≥ l0, if

min
1
k

i+k∑
l=i+1

1K(yl),
1
k

i−2∑
l=i−1−k

1K(yl)
 ≥ max

(
1− γ−, 1 + γ+

2

)
, (3.61)

for all k ∈ N with k ≥ l0, and if

E?
[
log+

(
sup
θ∈T

sup
(x0,x1)∈X2

ϕθ(x0, x1)gθ(Y1|x1)
)]

< +∞ , (3.62)

then we have

Eθ,µ [ϕθ(Xi−1, Xi) | y−m:n−1] ≤ Zi,l0 (3.63)

for all (m,n) ∈ N 2 with −m < i ≤ n.
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Lemma 18 will turn out to be of limited use unless we can guarantee that conditions

(3.60) and (3.61) hold for every i as soon as there are enough terms in the sums. For all

i0 ∈ Z, strong stationarity and ergodicity under Conditions C1 and C3(i) guarantee the

existence of a P?-almost surely finite random integer Li0 such that

1
k

i0+k∑
l=i0+1

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)

for all (γ−, γ+) ∈ (0, 1)2 satisfying 1 − P?(Y0 ∈ K)< γ− < γ+ < 2P?(Y0 ∈ K) − 1 and all

k ≥ Li0 (Douc and Moulines, 2012, p.2719-2720). Although trivial for a finite number of

indexes, the existence of a critical size L0 that would be common to infinitely many i0 ∈ Z

is not guaranteed. This motivates the following assumption.

Assumption A8. For all (γ−, γ+) ∈ (0, 1)2 satisfying 1 − P?(Y0 ∈ K) < γ− < γ+ <

2P?(Y0 ∈ K)− 1, there exists a P?-almost surely finite random integer L0 such that

1
k

i+k∑
l=i+1

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)
(3.64)

for all k ≥ L0 and all i ∈ Z.

Assumption A8 is extremely restrictive and constitutes a major limitation of the current

derivation. It points at the need for additional conditions on the mixing of the observed process

(Yt)t∈N. A weaker condition could tentatively be the existence of some τ ? > 0 such that for all

k ∈ N∗ and t > 0, P?(| 1k
∑k
i=1 1K(Yi)− P?(Y0 ∈ K)| > t) ≤ eτ

?t2k. These considerations still

require further investigation, and the rest of this section should be read as a proof of concept.

Lemma 19. Assume that Conditions C1 to C4 and Assumption A8 hold. For all probability

measures µ and µ′ on X satisfying µ(D) > 0 and µ′(D) > 0, there exists ρ ∈ (0, 1) and a

P?-almost surely finite random variable N ∈ N with N ≥ 2, such that for all n ∈ N with

n ≥ N , all i ∈ J0, n − 1K, all parameters θ ∈ T, all non-negative functions ϕθ : X2 → R+
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satisfying E?[log+(supθ∈T sup(x0,x1)∈X2 ϕθ(x0, x1)gθ(Y1|x1))] < +∞, there exists a P?-almost

surely finite random variable Zi ∈ R+ such that for all m ∈ N, we have
∣∣∣Eθ,µ [ϕθ(Xi−1, Xi) | y−m:n−1]− Eθ,µ′ [ϕθ(Xi−1, Xi) | y−m:n−1]

∣∣∣ ≤ ρm+i Zi (3.65)

if d(n−m)/2e ≤ i ≤ n, and
∣∣∣Eθ,µ [ϕθ(Xi−1, Xi) | y−m:n−1]− Eθ,µ [ϕθ(Xi−1, Xi) | y−m:n−2]

∣∣∣ ≤ ρn−i Zi (3.66)

if −m ≤ i < d(n−m)/2e, P?-almost surely.

The majorant Zi in Lemma 19 essentially plays the role of the term “2 ‖ϕθ,i‖∞” in the

proof of Lemma 13 from Douc et al. (2004, p.2294). Its dependence on the index i complicates

the analysis and prevents careless uses of telescopic sums over i. We make the following

simplifying assumption about the integrability of Zi.

Assumption A9. The sequence (Zi)i∈N is stationary and E?[Zi] < +∞ for all i ∈ N.

The stationarity of (Zi)i∈N could be justified using Condition C1. On the other hand,

the integrability of Zi will be solely used for ease of exposition: the construction of Zi

involves non-analytical expressions similar to the ones in (3.76) (Section 3.6.3), for which

integrability can likely not realistically be checked.

Lemma 20. For all parameters θ ∈ T, all collections ϕθ = (ϕθ,i)i∈N of non-negative

functions ϕθ,i : X2 → R+ with E?[log+(supθ∈T sup(x0,x1)∈X2 ϕθ,i(x0, x1)gθ(Yi|x1))] < +∞,

and all probability measures µ on X, let

∆E,θ
k,m,µ(ϕθ) = Eθ,µ

 k∑
i=−m

ϕθ,i(Xi−1, Xi)

∣∣∣∣∣∣ y−m:k

− Eθ,µ

 k−1∑
i=−m

ϕθ,i(Xi−1, Xi)

∣∣∣∣∣∣ y−m:k−1

 .
If Lemma 19 and Assumption A9 hold, then there exist P?-almost surely finite random variables

K ∈ N and Z ∈ R+ with K ≥ 2, and ρ ∈ (0, 1), such that, P?-almost surely, we have

sup
θ∈T

sup
k>K

sup
m∈N

∣∣∣∆E,θ
k,m,µ(ϕθ)−∆E,θ

k,m,µ′(ϕθ)
∣∣∣ ≤ Z max(k2,m2) ρk+m (3.67)
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and

sup
θ∈T

sup
k>K

sup
(m′,m)∈N2

m′>m

∣∣∣∆E,θ
k,m′,µ(ϕθ)−∆E,θ

k,m,µ(ϕθ)
∣∣∣ ≤ Z max(k2,m2) ρk+m (3.68)

for all probability measures µ and µ′ on X satisfying µ(D) > 0 and µ′(D) > 0.

Equation (3.68) from Lemma 20 implies that (∆E,θ
k,m,µ(ϕθ))m∈N is a real-valued Cauchy

sequence, hence it converges P?-almost surely to a limit ∆E,θ
k,∞(ϕθ). This limit does not depend

on µ thanks to (3.67). Our Lemma 20 serves the same purpose as Lemma 13 in Douc et al.

(2004). Obtaining an analog of their Lemma 14 would immediately lead us to a version of

their Lemma 15, which in turn would imply our desired convergence result by following the

derivation of their Proposition 4 (Douc et al., 2004, p.2295-2297).

3.6.2.2 Second term: sum of smoothing variances

The goal here is to prove that the second term in (3.53) given by

1
n

n−1∑
k=0

∆V,θ
k,0,µ

(
φ

(1)
θ

)
(3.69)

converges P?-a.s. to some limit E?[∆V,θ
0,∞(φ(1)

θ )] not depending on the initial distribution µ,

with a uniform control in the neighborhood of θ?. We may follow the same steps as described

in Section 3.6.2.1 and essentially aim for a generalization of Proposition 5 in Douc et al.

(2004), which we may hope to achieve by deriving an analog of their Lemma 16 by using the

same decompositions as in Douc et al. (2004, p.2298-2302). We do not anticipate any major

additional difficulties in comparison to the analysis of the first term in Section 3.6.2.1, whose

complete treatment would then naturally guide the analysis of the second term.

3.6.3 Proofs of intermediate results

Before proving the results presented in Section 3.6.2, we start by introducing a couple of

inequalities (Lemma 21) that will be repeatedly used in the subsequent proofs.
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Lemma 21. For all ρ ∈ (0, 1) and (k1, k2) ∈ N2 with 1 ≤ k1 ≤ k2, we have

1 ≤
k2∏
l=k1

1 + ρ l

1− ρ l ≤ exp
(

ρ k1(2− ρ k1)
(1− ρ)(1− ρ k1)

)
≤ exp

(
2

(1− ρ)2

)
. (3.70)

We can prove Lemma 21 by using the inequalities x(1 + x)−1 ≤ log(1 + x) ≤ x, which

hold for all x > −1, so that for all (k1, k2) ∈ N2 with 1 ≤ k1 ≤ k2, we have

0 ≤ log
 k2∏
l=k1

1 + ρ l

1− ρ l

 =
k2∑
l=k1

log
(
1 + ρ l

)
−

k2∑
l=k1

log
(
1− ρ l

)
≤

k2∑
l=k1

ρ l +
k2∑
l=k1

ρ l

1− ρ l .

The right-hand side can be further simplified via
k2∑
l=k1

ρ l +
k2∑
l=k1

ρ l

1− ρ l ≤
(

1 + 1
1− ρ k1

)
k2∑
l=k1

ρ l ≤ 2− ρ k1

1− ρ k1

+∞∑
l=k1

ρ l ≤ ρ k1(2− ρ k1)
(1− ρ)(1− ρ k1)

≤ 2
(1− ρ)2

where the geometric series converges since ρ ∈ (0, 1). By taking the exponential, we get

1 ≤
k2∏
l=k1

1 + ρ l

1− ρ l ≤ exp
(

ρ k1(2− ρ k1)
(1− ρ)(1− ρ k1)

)
≤ exp

(
2

(1− ρ)2

)

which concludes the proof of Lemma 21.

We are now ready to present the proofs of Lemmas 16 to 20.

Proof of Lemma 16. We fix any arbitrary θ ∈ T. Under Conditions C3 and C4, we may use

the objects defined in Remark 14. By definition of µθ,−m:n−1 from (3.45), we have

µθ,−m:n−1(D) = µLθ〈y−m:n−1〉(1D)
µLθ〈y−m:n−1〉(1X) ≥ µ(D)

 n−1∏
l=−m

1
Vl


which implies

µθ,−m:n−1(D) ≥ µ(D)Z0 (3.71)

for all (m,n) ∈ N2 with m ≤ l0 and n ≤ l0, by defining the P?-almost surely positive and

finite random variable

Z0 =
l0∏

l=−l0

1
max(1, Vl)

. (3.72)
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The difficulty lies in lower-bounding µθ,−m:n−1 uniformly in (m,n) if m > l0 or n > l0.

First, let’s assume that m > l0. By noticing that

µLθ〈y−m:n−1〉(1D)
µLθ〈y−m:n−1〉(1X) = (µLθ〈y−m〉)Lθ〈y−m+1:n−1〉(1D)

(µLθ〈y−m〉)Lθ〈y−m+1:n−1〉(1X) = µθ,−mLθ〈y−m+1:n−1〉(1D)
µθ,−mLθ〈y−m+1:n−1〉(1X) ,

we can write

|µθ,−m+1:n−1(D)− µθ,−m:n−1(D)| =
∣∣∣∣∣µLθ〈y−m+1:n−1〉(1D)
µLθ〈y−m+1:n−1〉(1X) −

µθ,−mLθ〈y−m+1:n−1〉(1D)
µθ,−mLθ〈y−m+1:n−1〉(1X)

∣∣∣∣∣
=
∣∣∣∣∣(µ⊗ µθ,−m)L̄θ〈y−m+1:n−1〉(1D ⊗ 1X − 1X ⊗ 1D)

(µ⊗ µθ,−m)L̄θ〈y−m+1:n−1〉(1X ⊗ 1X)

∣∣∣∣∣ . (3.73)

Let ηc = exp(−2cE?[log+ V0]) for some arbitrary constant c > 1, so that we have ηc ∈ (0, 1)

and E?
[
log+(V 2

0 )
]
< − log ηc , with ηc → 0 as c → +∞. Since condition (3.55) and m > l0

guarantee that (m + n − 1)−1∑n−1
l=−m+1 1K(yl) ≥ max (1− γ−, (1 + γ+)/2), we may apply

Lemma 17, so there exists ρ ∈ (0, 1) not depending on (m,n, ηc) such that we have

|(µ⊗µθ,−m)L̄θ〈y−m+1:n−1〉(1D ⊗ 1X − 1X ⊗ 1D)
∣∣∣

≤ ρm+n−1(µ⊗ µθ,−m)L̄θ〈y−m+1:n−1〉 (1D ⊗ 1X + 1X ⊗ 1D)

+ ηm+n−1
c 2

n−1∏
l=−m+1

‖Lθ〈yl〉(·,X)‖2
∞ .

Plugging this back into (3.73) leads to

|µθ,−m+1:n−1 (D)− µθ,−m:n−1(D)| (3.74)

≤ ρm+n−1
(
µθ,−m+1:n−1(D) + µθ,−m:n−1(D)

)

+ ηm+n−1
c

2 ∏n−1
l=−m+1 ‖Lθ〈yl〉(·,X)‖2

∞

(µ⊗ µθ,−m)L̄θ〈y−m+1:n−1〉(1X ⊗ 1X)
.
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By Remark 14, we have the following inequalities:

n−1∏
l=−m+1

‖Lθ〈yl〉(·,X)‖2
∞ ≤

 n−1∏
l=−m+1

G2
l

 ,

µ Lθ〈y−m+1:n−1〉(1X) ≥ µ(D)
 n−1∏
l=−m+1

Fl

 ,

µθ,−m Lθ〈y−m+1:n−1〉(1X) ≥ µ(D)
V−m

 n−1∏
l=−m+1

Fl

 .
Applying these inequalities to (3.74) leads to

|µθ,−m+1:n−1(D)− µθ,−m:n−1(D)|

≤ ρm+n−1
(
µθ,−m+1:n−1(D) + µθ,−m:n−1(D)

)
+ ηm+n−1

c

2V−m
∏n−1
l=−m+1 V

2
l

µ(D)2

which implies

µθ,−m:n−1(D) ≥
(

1− ρm+n−1

1 + ρm+n−1

)
µθ,−m+1:n−1(D) −

(
ηm+n−1
c

1 + ρm+n−1

)
2V−m

∏n−1
l=−m+1 V

2
l

µ(D)2

≥
(

1− ρm+n−1

1 + ρm+n−1

)
µθ,−m+1:n−1(D) − ηm+n−1

c

2V−m
∏n−1
l=−m+1 V

2
l

µ(D)2 . (3.75)

Under Conditions C1 to C4, the processes (max(1, Vl))l∈Z and (V 2
l )l∈Z are stationary, while

also satisfying E?
[
log+(max(1, V0))

]
< +∞ and E?

[
log+ V 2

0

]
< +∞. By using Lemma 6

from Douc and Moulines (2012), we may define ξc = ηc/(αα̃) ∈ (0, 1) for any ηc < α <

exp(−2E?[log+ V0]) < 1 and (ηc/α) < α̃ < 1. In particular, by choosing α = η1/4
c and

α̃ = η1/4
c with c ≥ 5, we get ξc = η1/2

c and we may define

Z̃c = 1 +
(

sup
k1≥0

ηk1/4
c V̄−k1

)sup
k1≥1

0∏
i=−k1+1

(V 2
i η

1/4
c )

sup
k2≥1

k2−1∏
i=1

(V 2
i η

1/4
c )

(sup
k2≥1

ηk2/4
c V̄k2

)
(3.76)

where V̄k = max(1, Vk), so that, P?-almost surely, we have 0 < Z̃c < +∞, and

ηk1+k2
c max(1, V−k1)

 k2∏
l=−k1+1

V 2
l

max(1, Vk2) ≤ ξ k1+k2
c Z̃c ≤ ξ k1+k2

c Z̃5
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for all (k1, k2) ∈ N 2 with k1 + k2 ≥ 1 and all c ≥ 5. This implies both

ηm+n−1
c V−m

n−1∏
l=−m+1

V 2
l ≤ ξm+n−1

c Z̃5 (3.77)

and

ηm+n−1
c Vn−1

n−2∏
l=−m

V 2
l ≤ ξm+n−1

c Z̃5 (3.78)

for all c ≥ 5. Plugging (3.77) into (3.75) yields

µθ,−m:n−1(D) ≥
(

1− ρm+n−1

1 + ρm+n−1

)
µθ,−m+1:n−1(D) − ξm+n−1

c

2 Z̃5

µ(D)2 .

Under condition (3.55), we may apply this reasoning recursively on µθ,k:n−1(D) in a forward

fashion for k ∈ J−m,−l0K. This leads to

µθ,−m:n−1(D) ≥
m+n−1∏
l=l0+n

1− ρ l
1 + ρ l

µθ,−l0:n−1(D) −
m+n−1∑
l=l0+n

ξlc

m+n−1∏
j=l+1

1− ρ j
1 + ρ j

 2 Z̃5

µ(D)2

≥

m+n−1∏
l=l0+n

1− ρ l
1 + ρ l

µθ,−l0:n−1(D) −
+∞∑
l=l0

ξlc

 2 Z̃5

µ(D)2 . (3.79)

Using Lemma 21, we get

µθ,−m:n−1(D) ≥ exp
(
− 2

(1− ρ)2

)
µθ,−l0:n−1(D) −

(
ξl0c

1− ξc

)
2 Z̃5

µ(D)2 . (3.80)

If n ≤ l0, then we have

µθ,−m:n−1(D) ≥ exp
(
− 2

(1− ρ)2

)
µ(D)Z0 −

(
ξl0c

1− ξc

)
2 Z̃5

µ(D)2 . (3.81)

One key point is that we may choose ξc independently from Z0 and Z̃5. Since ξl0c (1−ξc)−1 → 0

as c → +∞ (i.e. ξc → 0), then for every finite realization (z0, z̃5) of (Z0, Z̃5), there exists

some c0 ≥ 5 large enough such that

exp
(
− 2

(1− ρ)2

)
z0 −

(
ξl0c0

1− ξc0

)
2 z̃5

µ(D)3 > 0. (3.82)
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By choosing such a c0 ≥ 5 for each realized value of (Z0, Z̃5), the left-hand side of (3.82)

defines the realization of some P?-almost surely finite and strictly positive random variable

Z1. Note that Z1 does not depend on (m,n), and we have

µθ,−m:n−1(D) ≥ µ(D)Z1 (3.83)

by construction, for all (m,n) ∈ N2 with m > l0 and n ≤ l0.

If n > l0, we proceed similarly by deriving a backward recursion. We have

|µθ,−m:n−1(D)− µθ,−m:n−2(D)| =
∣∣∣∣∣µLθ〈y−m:n−1〉(1D)
µLθ〈y−m:n−1〉(1X) −

µLθ〈y−m:n−2〉(1D)
µLθ〈y−m:n−2〉(1X)

∣∣∣∣∣
=
∣∣∣∣∣(µ⊗ µ)L̄θ〈y−m:n−2〉(Lθ〈yn−1〉1D ⊗ 1X − 1X ⊗ Lθ〈yn−1〉1D)

(µ⊗ µ)L̄θ〈y−m:n−2〉(Lθ〈yn−1〉1X ⊗ 1X)

∣∣∣∣∣ .
Since n > l0, we have (m + n − 1)−1∑n−2

l=−m 1K(yl) ≥ max (1− γ−, (1 + γ+)/2) thanks to

Condition (3.55), so we may apply Lemma 17 again and obtain

|(µ⊗ µ) L̄θ〈y−m:n−2〉(Lθ〈yn−1〉1D ⊗ 1X − 1X ⊗ Lθ〈yn−1〉1D)
∣∣∣

≤ ρm+n−1(µ⊗ µ)L̄θ〈y−m:n−2〉(Lθ〈yn−1〉1D ⊗ 1X + 1X ⊗ Lθ〈yn−1〉1D)

+ ηm+n−1
c 2Gn−1

n−2∏
l=−m

‖Lθ〈yl〉(·,X)‖2
∞ .

This leads to

|µθ,−m:n−1 (D)− µθ,−m:n−2(D)|

≤ ρm+n−1
(
µθ,−m:n−1(D) + µθ,−m:n−2(D)

)

+ ηm+n−1
c

2Gn−1
∏n−2
l=−m ‖Lθ〈yl〉(·,X)‖2

∞

(µ⊗ µ)L̄θ〈y−m:n−2〉(Lθ〈yn−1〉1X ⊗ 1X)
.

which further yields

µθ,−m:n−1(D) ≥
(

1− ρm+n−1

1 + ρm+n−1

)
µθ,−m:n−2(D) − ηm+n−1

c

2Vn−1
∏n−2
l=−m V

2
l

µ(D)2 .
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By using (3.78), this implies

µθ,−m:n−1(D) ≥
(

1− ρm+n−1

1 + ρm+n−1

)
µθ,−m:n−2(D) − ξm+n−1

c

2 Z̃5

µ(D)2 .

Under condition (3.55), we may apply this reasoning recursively on µθ,−m:k(D) in a backward

fashion for k ∈ Jl0, n− 1K , which leads to

µθ,−m:n−1(D) ≥
m+n−1∏
l=m+l0

1− ρ l
1 + ρ l

µθ,−m:l0−1(D) −
m+n−1∑
l=m+l0

ξlc

m+n−1∏
j=l+1

1− ρ j
1 + ρ j

 2 Z̃5

µ(D)2

≥

m+n−1∏
l=m+l0

1− ρ l
1 + ρ l

µθ,−m:l0−1(D) −
+∞∑
l=l0

ξlc

 2 Z̃5

µ(D)2

Using again Lemma 21, we get

µθ,−m:n−1(D) ≥ exp
(
− 2

(1− ρ)2

)
µθ,−m:l0−1(D) −

(
ξl0c

1− ξc

)
2 Z̃5

µ(D)2 . (3.84)

If m ≤ l0, then we have µθ,−m:l0−1(D) > µ(D)Z0 and we retrieve (3.81), which implies

µθ,−m:n−1(D) > µ(D)Z1 (3.85)

for all (m,n) ∈ N2 with m ≤ l0 and n > l0, similarly to (3.83). For the general case when

both m > l0 and n > l0, we start by using the forward recursion in (3.80) to obtain

µθ,−m:n−1(D) ≥ exp
(
− 2

(1− ρ)2

)
µθ,−l0:n−1(D) −

(
ξl0c

1− ξc

)
2 Z̃5

µ(D)2 . (3.86)

We then bound from below the term µθ,−l0:n−1(D) by applying the backward recursion in

(3.84), so that (3.86) further implies

µθ,−m:n−1(D) ≥ exp
(
− 4

(1− ρ)2

)
µθ,−l0:l0−1(D)−

[
1 + exp

(
− 2

(1− ρ)2

)](
ξl0c

1− ξc

)
2 Z̃5

µ(D)2 .

≥ exp
(
− 4

(1− ρ)2

)
Z0 −

[
1 + exp

(
− 2

(1− ρ)2

)](
ξl0c

1− ξc

)
2 Z̃5

µ(D)2 .

Similarly to (3.82), we may choose ξc small enough, independently from Z0 and Z̃5, such that

exp
(
− 4

(1− ρ)2

)
z0 −

[
1 + exp

(
− 2

(1− ρ)2

)](
ξl0c1

1− ξc1

)
2 z̃5

µ(D)2 > 0
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for some appropriately chosen c1 ≥ 5 tailored to each realized value (z0, z̃5) of (Z0, Z̃5). The

left hand side then defines some P?-almost surely finite and strictly positive random variable

Z2, which does not depend on (m,n), and we have

µθ,−m:n−1(D) ≥ µ(D)Z2 (3.87)

for all (m,n) ∈ N2 with m > l0 and n > l0. By putting together (3.71), (3.83), (3.85), and

(3.87), we finally get

µθ,−m:n−1(D) ≥ µ(D)Zl0

for all (m,n) ∈ N with n ≥ 1, where Zl0 = min(Z0, Z1, Z2) is positive and finite P?-almost

surely. This concludes the proof of Lemma 16.

Proof of Lemma 17. Under Condition C3, there exists a Doeblin set C for which

ρC = 1−
(

inf
y∈K

ε−C(y)
ε+C(y)

)2

and MC̄c(x̄−m:i−1) =
i−1∑
l=−m

1C̄c(x̄l)

can be defined, where C̄ = C × C and C̄c denotes its complement. Under Condition C3 and

condition (3.57), equations (31), (34), and (35) from the proof of Proposition 5 in Douc and

Moulines (2012) hold for all non-negative real-valued functions f and h (even unbounded

ones), so that for all β ∈ (γ−, γ+), we have

∣∣∣(µ⊗ µ′)L̄θ〈y−m:i−1〉(f ⊗ h− h⊗ f)
∣∣∣

≤ ρ
b(i+m)(β−γ−)c
C (µ⊗ µ′)L̄θ〈y−m:i−1〉 (f ⊗ h+ h⊗ f) (3.88)

+
∫

(µ⊗ µ′)(dx̄0)1{MC̄c (x̄−m:i−1)≥ (i+m)−b(i+m)βc
2 }

 i−1∏
l=−m

L̄θ〈yl〉(x̄l, dx̄l+1)
 (f ⊗ h+ h⊗ f) (x̄i).

From (3.57), we have∑i−1
l=−m 1K(yl) ≥ ((i+m) + b(i+m)γ+c) /2. Since 1K(yl) = 1−1Kc(yl),

this leads to −∑i−1
l=−m 1Kc(yl) ≥ (b(i+m)γ+c − (i+m)) /2. When the indicator in the above
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integral is non-zero, i.e. when MC̄c(x̄−m:i−1) ≥ ((i+m)− b(i+m)βc)/2, we have

i−1∑
l=−m

1C̄c(x̄l)1K(yl) ≥
i−1∑
l=−m

1C̄c(x̄l)−
i−1∑
l=−m

1Kc(yl) ≥
b(i+m)γ+c − b(i+m)βc

2 ≥ b(i+m)(γ+ − β)c
2 .

This in turns implies that, for all η̃ ∈ (0, 1), we have

(
η̃
∑i−1

l=−m 1C̄c (x̄l)1K(yl)
)
1{MC̄c (x̄−m:i−1)≥ (i+m)−b(i+m)βc

2 } ≤ η̃
b(i+m)(γ+−β)c

2 ≤
(
η̃
bγ+−βc

2

)i+m

where the last inequality follows from 0 ≤ (i+m)bγ+ − βc ≤ b(i+m)(γ+ − β)c. Similarly,

we also have 0 ≤ (i+m)bβ − γ−c ≤ b(i+m)(β − γ−)c and ρC ∈ (0, 1) by Condition C3, so

that ρbβ−γ
−c(i+m)

C ≤ ρ
b(i+m)(β−γ−)c
C . By choosing β = (γ− + γ+)/2, we may rewrite (3.88) as

| (µ⊗ µ′)L̄θ〈y−m:i−1〉(f ⊗ h− h⊗ f)
∣∣∣

≤
(
ρ
b(γ+−γ−)/2c
C

)i+m
(µ⊗ µ′)L̄θ〈y−m:i−1〉 (f ⊗ h+ h⊗ f)

+
(
η̃

1
2 b(γ

+−γ−)/2c
)i+m ∫

(µ⊗ µ′)(dx̄0)
 i−1∏
l=−m

L̄θ〈yl〉(x̄l, dx̄l+1)
η̃ 1C̄c (x̄l)1K(yl)

 (f ⊗ h+ h⊗ f) (x̄i)

which proves (3.58) by setting ρ = ρ
b(γ+−γ−)/2c
C ∈ (0, 1) and η = η̃

1
2 b(γ

+−γ−)/2c ∈ (0, 1). The

result holds for any η ∈ (0, 1) and its corresponding η̃, with ρ not depending on (η, η̃). When

f and h are bounded, we have ‖f ⊗ h+ h⊗ f‖∞ ≤ 2 ‖f‖∞‖h‖∞, so that the result follows

from the proof of Proposition 5 in Douc and Moulines (2012).

Proof of Lemma 18. Using (3.51), we introduce the notation

I θ,µ,i−m:n−1(ϕθ) = Eθ,µ [ϕθ(Xi−1, Xi) | y−m:n−1] = µLθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:n)
µLθ〈y−m:i−2〉 (hθ,i−1:n)

.

As per Remark 14, under the given assumptions we have

I θ,µ,i−m:n−1(ϕθ) ≤

 n−1∏
l=−m
l 6= i−1

Vl

 V ϕ
i−1

µ(D) ≤
1

µ(D)

 n−1∏
l=−m

Ṽl

 ≤ +∞ (3.89)
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for all −m < i ≤ n, all θ ∈ T, and all µ such that µ(D) > 0. In particular, by defining

Z0 = 1
µ(D)

 i+l0+1∏
l=i−l0−1

max(1, Ṽl)
 , (3.90)

we then have, for all (m,n) ∈ N2 with i− l0 − 1 ≤ −m < n ≤ i+ l0 + 1,

I θ,µ,i−m:n−1(ϕθ) ≤ Z0. (3.91)

The challenge is to bound I θ,µ,i−m:n−1(ϕθ) uniformly in (m,n). First, let i+ l0 + 1 < n. We have

I θ,µ,i−m:n−1(ϕθ)− I θ,µ,i−m:n−2(ϕθ)

= µLθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:n)
µLθ〈y−m:i−2〉 (hθ,i−1:n)

−
µLθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:n−1)

µLθ〈y−m:i−2〉 (hθ,i−1:n−1)

= (µ⊗ µ)L̄θ〈y−m:i−2〉
(
Lϕθθ 〈yi−1〉hθ,i:n ⊗ hθ,i−1:n−1 − hθ,i−1:n ⊗ Lϕθθ 〈yi−1〉hθ,i:n−1

)
(µ⊗ µ)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n−1)

= (µ⊗ µ)L̄θ〈y−m:i−2〉
(
Lϕθθ 〈yi−1〉hθ,i:n ⊗ Lθ〈yi−1〉hθ,i:n−1 − Lθ〈yi−1〉hθ,i:n ⊗ Lϕθθ 〈yi−1〉hθ,i:n−1

)
(µ⊗ µ)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n−1)

= (µ⊗ µ)L̄θ〈y−m:i−2〉(Lϕθθ 〈yi−1〉 ⊗ Lθ〈yi−1〉)(hθ,i:n ⊗ hθ,i:n−1 − hθ,i:n−1 ⊗ hθ,i:n)
(µ⊗ µ)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n−1)

. (3.92)

We can write

(hθ,i:n ⊗ hθ,i:n−1 − hθ,i:n−1 ⊗ hθ,i:n) = L̄θ〈yi〉(hθ,i+1:n ⊗ hθ,i+1:n−1 − hθ,i+1:n−1 ⊗ hθ,i+1:n) (3.93)

where we have

(hθ,i+1:n ⊗ hθ,i+1:n−1 − hθ,i+1:n−1 ⊗ hθ,i+1:n)(x, x′) = (δx ⊗ δx′)L̄θ〈yi+1:n−2〉(gθ,n−1 ⊗ 1X − 1X ⊗ gθ,n−1)

for all (x, x′) ∈ X2, thanks to (3.48). Under Condition C4, we may assume without loss of gen-

erality that the observation yn−1 is such that gθ,n−1 is bounded, as per Remark 14. This bound-

edness combined with the condition (n− i− 2)−1∑n−2
l=i+1 1K(yl) ≥ max (1− γ−, (1 + γ+)/2)
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for n > i+ l0 + 1 from (3.61) allows us to apply Lemma 17, which yields

|hθ,i+1:n ⊗ hθ,i+1:n−1 − hθ,i+1:n−1 ⊗ hθ,i+1:n| (x, x′)

≤ ρn−i−2(δx ⊗ δx′)L̄θ〈yi+1:n−2〉 (gθ,n−1 ⊗ 1X + 1X ⊗ gθ,n−1)

+ 2 ηn−i−2 ‖gθ,n−1‖∞
n−2∏
l=i+1

‖Lθ〈yl〉(·,X)‖2
∞

for some ρ ∈ (0, 1), all η > 0, and all (x, x′) ∈ X2. This implies

|hθ,i+1:n ⊗ hθ,i+1:n−1 − hθ,i+1:n−1 ⊗ hθ,i+1:n|

≤ ρn−i−2 (hθ,i+1:n ⊗ hθ,i+1:n−1 + hθ,i+1:n−1 ⊗ hθ,i+1:n) + 2 ηn−i−2Gn−1

 n−2∏
l=i+1

G2
l

 (1X ⊗ 1X) .

Combining this inequality with (3.93) yields

|hθ,i:n ⊗ hθ,i:n−1 − hθ,i:n−1 ⊗ hθ,i:n| (3.94)

≤ ρn−i−2 (hθ,i:n ⊗ hθ,i:n−1 + hθ,i:n−1 ⊗ hθ,i:n) + 2 ηn−i−2Gn−1

 n−2∏
l=i+1

G2
l

 (hθ,i:i+1 ⊗ hθ,i:i+1)

since L̄θ〈yi〉(1X ⊗ 1X) = (hθ,i:i+1 ⊗ hθ,i:i+1). Plugging (3.94) back into (3.92) leads to

I θ,µ,i−m:n−1(ϕθ)− I θ,µ,i−m:n−2(ϕθ) ≤ ρn−i−2
(
I θ,µ,i−m:n−1(ϕθ) + I θ,µ,i−m:n−2(ϕθ)

)

+ 2 ηn−i−2 Gn−1

 n−2∏
l=i+1

G2
l

 (µ⊗ µ)L̄θ〈y−m:i−2〉(Lϕθθ 〈yi−1〉 ⊗ Lθ〈yi−1〉) (hθ,i:i+1 ⊗ hθ,i:i+1)
(µ⊗ µ)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n−1)

which simplifies to

I θ,µ,i−m:n−1(ϕθ) ≤
(

1 + ρn−i−2

1− ρn−i−2

)
I θ,µ,i−m:n−2(ϕθ) (3.95)

+
(

2 ηn−i−2 Gn−1

1− ρn−i−2

) n−2∏
l=i+1

G2
l

 (µ⊗ µ)L̄θ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:i+1 ⊗ Lθ〈yi−1〉hθ,i:i+1)
(µ⊗ µ)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n−1)

.
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The last ratio on the right hand side can be written as

(µ⊗ µ)L̄θ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:i+1 ⊗ Lθ〈yi−1〉hθ,i:i+1)
(µ⊗ µ)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n−1)

= µLθ〈y−m:i−2〉
(
Lϕθθ 〈yi−1〉hθ,i:i+1

)
µLθ〈y−m:i−2〉 (hθ,i−1:i+1)

µLθ〈y−m:i−2〉 (hθ,i−1:i+1)
µLθ〈y−m:i−2〉 (hθ,i−1:n)

µLθ〈y−m:i−2〉 (Lθ〈yi−1〉hθ,i:i+1)
µLθ〈y−m:i−2〉 (hθ,i−1:n−1)

= µLθ〈y−m:i−2〉
(
Lϕθθ 〈yi−1〉hθ,i:i+1

)
µLθ〈y−m:i−2〉 (hθ,i−1:i+1)

µLθ〈y−m:i〉 (1X)
µLθ〈y−m:i〉 (hθ,i+1:n)

µLθ〈y−m:i〉 (1X)
µLθ〈y−m:i〉 (hθ,i+1:n−1)

= I θ,µ,i−m:i(ϕθ)
1

µθ,−m:i (hθ,i+1:n)
1

µθ,−m:i (hθ,i+1:n−1) (3.96)

for which we have

µθ,−m:i (hθ,i+1:n) =
∫
µθ,−m:i (dx)Lθ〈yi+1:n−1〉(x,X)

≥ µθ,−m:i (D)
 n−2∏
l=i+1

Fl

Fn−1 (3.97)

and

µθ,−m:i (hθ,i+1:n−1) =
∫
µθ,−m:i (dx)Lθ〈yi+1:n−2〉(x,X)

≥ µθ,−m:i (D)
 n−2∏
l=i+1

Fl

 (3.98)

Plugging (3.96), (3.97), and (3.98) into (3.95) yields

I θ,µ,i−m:n−1(ϕθ) ≤
(

1 + ρn−i−2

1− ρn−i−2

)
I θ,µ,i−m:n−2(ϕθ) +

2 ηn−i−2
(∏n−2

l=i+1 V
2
l

)
Vn−1

(1− ρn−i−2)µθ,−m:i (D)2 I θ,µ,i−m:i(ϕθ).

Under condition (3.60), we may apply Lemma 16, so that

I θ,µ,i−m:n−1(ϕθ) ≤
(

1 + ρn−2−i

1− ρn−2−i

)
I θ,µ,i−m:n−2(ϕθ) +

2 ηn−2−i
(∏n−2

l=i+1 V
2
l

)
Vn−1

(1− ρn−2−i)Z2
1 µ(D)2 I θ,µ,i−m:i(ϕθ) (3.99)

where Z1 > 0 is a P?-almost surely finite random variable. This derivation holds for

any η > 0, hence we may freely choose η ∈ (0, 1) satisfying η < exp(−2E?[log+ V0]), so

that − log η > E?[log+ V 2
0 ]. Since (Vl)l∈Z and (V 2

l )l∈Z are stationary sequences satisfying

E?[log+(V0)] < +∞ and E?[log+(V 2
0 )] = 2E?[log+ V0] < +∞ by assumption, Lemma 6 from
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Douc and Moulines (2012) guarantees the existence of a constant η2 ∈ (0, 1) and a P?-almost

surely finite random variable Z2 > 0 such that

ηn−i−2

 n−2∏
l=i+1

V 2
l

Vn−1 ≤ ηn−i−2
2 Z2

for all (n, i) ∈ Z2 with n− 2 ≥ i+ 1. By defining Z3 = 2Z2(Z2
1 µ(D)2)−1, this implies

I θ,µ,i−m:n−1(ϕθ) ≤
(

1 + ρn−i−2

1− ρn−i−2

)
I θ,µ,i−m:n−2(ϕθ) + Z3

(
ηn−i−2

2
1− ρn−i−2

)
I θ,µ,i−m:i(ϕθ). (3.100)

Condition (3.61) guarantees that we have k−1∑i+k
l=i+1 1K(yl) ≥ max (1− γ−, (1 + γ+)/2) for

all k ∈ Jl0, n− iK, hence we may apply (3.100) recursively on I θ,µ,i−m:l(ϕθ) in a backward fashion

for all l ∈ Ji+ l0, nK, which leads to

I θ,µ,i−m:n−1(ϕθ) ≤
n−i−2∏

l=l0

1 + ρ l

1− ρ l

 I θ,µ,i−m:i+l0(ϕθ) + Z3

n−i−2∑
l=l0

η l2
1− ρ l

n−i−2∏
j=l+1

1 + ρ j

1− ρ j

 I θ,µ,i−m:i(ϕθ). (3.101)

Using Lemma 21, we get

I θ,µ,i−m:n−1(ϕθ) ≤ exp
(

2
(1− ρ)2

)I θ,µ,i−m:i+l0(ϕθ) + Z3

n−i−2∑
l=l0

η l2
1− ρ l

 I θ,µ,i−m:i(ϕθ)


≤ exp
(

2
(1− ρ)2

)I θ,µ,i−m:i+l0(ϕθ) + Z3

1− ρ l0

+∞∑
l=l0

η l2

 I θ,µ,i−m:i(ϕθ)


≤ exp
(

2
(1− ρ)2

)(
I θ,µ,i−m:i+l0(ϕθ) + Z3 η

l0
2

(1− ρ l0)(1− η2) I
θ,µ,i
−m:i(ϕθ)

)
(3.102)

If i− l0 − 1 ≤ −m, then we have max(I θ,µ,i−m:i+l0(ϕθ), I θ,µ,i−m:i(ϕθ)) ≤ Z0, so that

I θ,µ,i−m:n−1(ϕθ) ≤ Z4 (3.103)

for all i− l0 − 1 ≤ −m < i+ l0 + 1 < n, where

Z4 = exp
(

2
(1− ρ)2

)(
1 + Z3 η

l0
2

(1− ρ l0)(1− η2)

)
Z0.
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Note that Z4 > Z0. If −m < i − l0 − 1, we bound terms of the form I θ,µ,i−m:i0(ϕθ) for

i ≤ i0 ≤ i+ l0 + 1 by using a similar recursive argument. We have

I θ,µ,i−m:i0(ϕθ)− I θ,µ,i−m+1:i0(ϕθ) (3.104)

= µLθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:i0+1)
µLθ〈y−m:i−2〉 (hθ,i−1:i0+1)

− µLθ〈y−m+1:i−2〉(Lϕθθ 〈yi−1〉hθ,i:i0+1)
µLθ〈y−m+1:i−2〉 (hθ,i−1:i0+1)

= (µLθ〈y−m〉 ⊗ µ)L̄θ〈y−m+1:i−2〉 (Lϕθθ 〈yi−1〉hθ,i:i0+1 ⊗ hθ,i−1:i0+1 − hθ,i−1:i0+1 ⊗ Lϕθθ 〈yi−1〉hθ,i:i0+1)
(µLθ〈y−m:i−2〉 (hθ,i−1:i0+1)) (µLθ〈y−m+1:i−2〉 (hθ,i−1:i0+1))

.

Since the functions Lϕθθ 〈yi−1〉hθ,i:i0+1 and hθ,i−1:i0+1 are non-negative and bounded, we may

again apply Lemma 17 thanks to (m+ i− 2)−1∑i−2
l=−m+1 1K(yl) ≥ max (1− γ−, (1 + γ+)/2)

from condition (3.61), which yields
∣∣∣(µLθ〈y−m〉 ⊗ µ)L̄θ〈y−m+1:i−2〉 (Lϕθθ 〈yi−1〉hθ,i:i0+1 ⊗ hθ,i−1:i0+1 − hθ,i−1:i0+1 ⊗ Lϕθθ 〈yi−1〉hθ,i:i0+1)

∣∣∣
≤ ρ̃m+i−2(µLθ〈y−m〉 ⊗ µ)L̄θ〈y−m+1:i−2〉 (Lϕθθ 〈yi−1〉hθ,i:i0+1 ⊗ hθ,i−1:i0+1 + hθ,i−1:i0+1 ⊗ Lϕθθ 〈yi−1〉hθ,i:i0+1)

+ η̃m+i−2

 i−2∏
l=−m+1

‖Lθ〈yl〉(•,X)‖2
∞

 2 ‖Lϕθθ 〈yi−1〉hθ,i:i0+1‖∞ ‖hθ,i−1:i0+1‖∞

≤ ρ̃m+i−2(µLθ〈y−m〉 ⊗ µ)L̄θ〈y−m+1:i−2〉 (Lϕθθ 〈yi−1〉hθ,i:i0+1 ⊗ hθ,i−1:i0+1 + hθ,i−1:i0+1 ⊗ Lϕθθ 〈yi−1〉hθ,i:i0+1)

+ η̃m+i−2

 i−2∏
l=−m+1

G2
l

 2
(
Gϕ
i−1

i0∏
l=i
Gl

)(
Gi−1

i0∏
l=i
Gl

)
(3.105)

for some ρ̃ ∈ (0, 1) and all η̃ > 0. On the other hand, we have

(µLθ〈y−m:i−2〉 (hθ,i−1:i0+1)) (µLθ〈y−m+1:i−2〉 (hθ,i−1:i0+1)) ≥ µ(D)2

 i0∏
l=−m+1

F 2
l

F−m. (3.106)

Plugging (3.105) and (3.106) back into (3.104) leads to∣∣∣I θ,µ,i−m:i0(ϕθ)− I θ,µ,i−m+1:i0(ϕθ)
∣∣∣

≤ ρ̃m+i−2
(
I θ,µ,i−m:i0(ϕθ) + I θ,µ,i−m+1:i0(ϕθ)

)
+ 2

η̃ i0−i µ(D)2 η̃m+i0

 i0∏
l=−m+1
l 6= i−1

V 2
l

 V ϕ
i−1Vi−1

F−m

≤ ρ̃m+i−2
(
I θ,µ,i−m:i0(ϕθ) + I θ,µ,i−m+1:i0(ϕθ)

)
+ 2

η̃ l0+1 µ(D)2 η̃m+i0

 i0∏
l=−m+1

Ṽ 2
l

 1
F−m

. (3.107)
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As previously, this derivation holds for any η̃ > 0, so we may freely choose η̃ ∈ (0, 1)

with η̃ < exp(−2E?[log+ Ṽ0]), so that − log η̃ > E?[log+ Ṽ 2
0 ]. Since (Ṽ 2

l )l∈Z, and (1/Fl)l∈Z

are stationary sequences satisfying E?[log+(Ṽ 2
l )] ≤ 2(E?[log+ V ϕ

0 ] + E?[log+ V0]) < +∞ and

E?[log+(1/Fl)] = E?[log− Fl] < +∞, Lemma 6 from Douc and Moulines (2012) guarantees

the existence of a constant η̃2 ∈ (0, 1) and a P?-a.s. finite random variable Z̃2 > 0 such that

η̃m+i0

 i0∏
l=−m+1

Ṽ 2
l

 1
F−m

≤ η̃m+i0−1
2 Z̃2 ≤ η̃m+i−2

2 Z̃2 (3.108)

for all m ∈ N. By defining Z̃3 = 2Z̃2(η̃ l0+1µ(D)2)−1, combining (3.108) with (3.107) implies

I θ,µ,i−m:i0(ϕθ) ≤
(

1 + ρ̃m+i−2

1− ρ̃m+i−2

)
I θ,µ,i−m+1:i0(ϕθ) + Z̃3

(
η̃m+i−2

2
1− ρ̃m+i−2

)
. (3.109)

Under condition (3.61), we have k−1∑i−2
l=i−1−k 1K(yl) ≥ max (1− γ−, (1 + γ+)/2) for all

l0 ≤ k < m+ i− 1, so that we may apply (3.109) recursively on I θ,µ,il:i0 (ϕθ) for −m ≤ l < i− l0

in a forward fashion, which leads to

I θ,µ,i−m:i0(ϕθ) ≤
m+i−2∏

l=l0

1 + ρ̃ l

1− ρ̃ l

 I θ,µ,ii−l0−1:i0(ϕθ) + Z̃3

m+i−2∑
l=l0

η̃ l2
1− ρ̃ l

m+i−2∏
j=l+1

1 + ρ̃ j

1− ρ̃ j

 .
Using Lemma 21 again, along with (3.91), we get

I θ,µ,i−m:i0(ϕθ) ≤ exp
(

2
(1− ρ̃)2

)(
I θ,µ,ii−l0−1:i0(ϕθ) + Z̃3 η̃

l0−1
2

(1− ρ̃ l0)(1− η̃2)

)

≤ exp
(

2
(1− ρ̃)2

)(
Z0 + Z̃3 η̃

l0−1
2

(1− ρ̃ l0)(1− η̃2)

)
(3.110)

for i ≤ i0 ≤ i+ l0 + 1. Plugging this back into (3.102) leads to

I θ,µ,i−m:n−1(ϕθ) ≤ Z5 (3.111)

for all (m,n) ∈ N 2 with −m < i− l0 − 1 < i+ l0 + 1 < n, where

Z5 = exp
(

4
(1− ρ)2

)(
1 + Z3 η

l0
2

(1− ρ l0)(1− η2)

)(
Z0 + Z̃3 η̃

l0−1
2

(1− ρ̃ l0)(1− η̃2)

)
.
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Note that (3.110) readily yields

I θ,µ,i−m:n−1(ϕθ) ≤ Z6 (3.112)

for all (m,n) ∈ N 2 with −m < i− l0 − 1 < n ≤ i+ l0 + 1, where

Z6 = exp
(

2
(1− ρ)2

)(
Z0 + Z̃3 η̃

l0−1
2

(1− ρ̃ l0)(1− η̃2)

)
.

By putting together (3.91), (3.103), (3.111), and (3.112), we have

I θ,µ,i−m:n−1(ϕθ) ≤ Zi,l0

with Zi,l0 = max(Z4, Z5, Z6), which is positive and finite P?-almost surely. This concludes

the proof of Lemma 18.

Proof of Lemma 19. Let (γ−, γ+) ∈ (0, 1)2 with γ− < γ+ such that under Assumption A8,

there exists a P?-almost surely finite random integer L0 that ensures

1
k

i+k∑
l=i+1

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)
(3.113)

for all k ≥ L0 and all i ∈ Z.

Let N = 2 (L0 + 1) so that (n + m)/2 > L0 for all m ∈ N and n ≥ N . Let’s fix such

m ∈ N and n ≥ N . Using the same notation as in the proof of Lemma 18, we have

I θ,µ,i−m:n−1(ϕθ)− I θ,µ
′,i

−m:n−1(ϕθ) (3.114)

= µLθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:n)
µLθ〈y−m:i−2〉 (hθ,i−1:n)

− µ′Lθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:n)
µ′Lθ〈y−m:i−2〉 (hθ,i−1:n)

= (µ⊗ µ′)L̄θ〈y−m:i−2〉 (Lϕθθ 〈yi−1〉hθ,i:n ⊗ hθ,i−1:n − hθ,i−1:n ⊗ Lϕθθ 〈yi−1〉hθ,i:n)
(µ⊗ µ′)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n)

= (µ⊗ µ′)L̄θ〈y−m:i−2〉 (Lϕθθ 〈yi−1〉hθ,i:n ⊗ Lθ〈yi−1〉hθ,i:n − Lθ〈yi−1〉hθ,i:n ⊗ Lϕθθ 〈yi−1〉hθ,i:n)
(µ⊗ µ′)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n)

.
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On the one hand, we have

(µ⊗ µ′)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n) ≥ µ(D)µ′(D)
 n−1∏
l=−m

F 2
l

 . (3.115)

On the other hand, if d(n−m)/2e ≤ i ≤ n, then m+ i− 1 ≥ (n+m)/2− 1 ≥ L0, so that

1
m+ i− 1

i−2∑
l=−m

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)

thanks to (3.113), which allows us to apply Lemma 17 and get∣∣∣(µ⊗ µ′)L̄θ〈y−m:i−2〉
(
Lϕθθ 〈yi−1〉hθ,i:n ⊗ Lθ〈yi−1〉hθ,i:n − Lθ〈yi−1〉hθ,i:n ⊗ Lϕθθ 〈yi−1〉hθ,i:n

)∣∣∣
≤ ρm+i−1(µ⊗ µ′)L̄θ〈y−m:i−2〉

(
Lϕθθ 〈yi−1〉hθ,i:n ⊗ Lθ〈yi−1〉hθ,i:n + Lθ〈yi−1〉hθ,i:n ⊗ Lϕθθ 〈yi−1〉hθ,i:n

)
+ ηm+i−1

 i−2∏
l=−m

‖Lθ〈yl〉(•,X)‖2∞

 2
∥∥Lϕθθ 〈yi−1〉hθ,i:n

∥∥
∞ ‖Lθ〈yi−1〉hθ,i:n‖∞ .

≤ ρm+i−1(µ⊗ µ′)L̄θ〈y−m:i−2〉
(
Lϕθθ 〈yi−1〉hθ,i:n ⊗ Lθ〈yi−1〉hθ,i:n + Lθ〈yi−1〉hθ,i:n ⊗ Lϕθθ 〈yi−1〉hθ,i:n

)
+ ηm+i−1

 i−2∏
l=−m

G2
l

 2
(
Gϕi−1

n−1∏
l=i

Gl

)(
Gi−1

n−1∏
l=i

Gl

)
(3.116)

for any η > 0 and some associated ρ∈ (0, 1). Plugging (3.115) and (3.116) into (3.114) yields

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ
′,i

−m:n−1(ϕθ)
∣∣∣

≤ ρm+i−1
∣∣∣I θ,µ,i−m:n−1(ϕθ) + I θ,µ

′,i
−m:n−1(ϕθ)

∣∣∣ + 2 ηm+i−1

µ(D)µ′(D)

 n−1∏
l=−m
l 6= i−1

V 2
l

V ϕ
i−1Vi−1. (3.117)

Regarding the first term in (3.117), equation (3.113) ensures (3.60) and (3.61), so that

∣∣∣I θ,µ,i−m:n−1(ϕθ) + I θ,µ
′,i

−m:n−1(ϕθ)
∣∣∣ ≤ 2Z1,i (3.118)

for some P?-almost surely finite random variable Z1,i > 0, thanks to Lemma 18. Regarding

the second term in (3.117), we are free to choose η ∈ (0, 1) with η < exp(−2E?[log+ Ṽ0]), so

that − log η > E?[log+ Ṽ 2
0 ]. Since (Ṽ 2

l )l∈Z is a stationary sequence satisfying E?[log+(Ṽ 2
0 )] ≤
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2(E?[log+ V ϕ
0 ] + E?[log+ V0]) < +∞, Lemma 6 from Douc and Moulines (2012) and its proof

guarantee the existence of a P?-almost surely finite random variable Z2 > 0 such that

ηm+n−1

 n−1∏
l=−m
l 6= i−1

V 2
l

V ϕ
i−1Vi−1 ≤ ηm+n−1

 n−1∏
l=−m

Ṽ 2
l

 ≤ ηm+n−1
2 Z2 (3.119)

for all −m ≤ 0 < i ≤ n, and all η2 = η/(αα̃) ∈ (0, 1) with η < α < exp(−2E?[log+ V0]) < 1

and (η/α) < α̃ < 1. In particular, by judiciously choosing η = exp(−18E?[log+ V0]), α = η1/6,

α̃ = η1/6, we get η2 = η2/3 and thus

ηm+i−1

 n−1∏
l=−m
l 6= i−1

V 2
l

V ϕ
i−1Vi−1 ≤

ηm+n−1
2
ηn−i

Z2 ≤ (η1/3)2(m+n−1)−3(n−i) Z2 ≤ (η1/3)m+i Z2 (3.120)

since η1/3 ∈ (0, 1), and 2(m+ n− 1)− 3(n− i) = (m+ i) + [m+ n− 1− 2(n− i)] ≥ (m+ i)

thanks to d(n−m)/2e ≤ i ≤ n. Plugging (3.118) and (3.120) into (3.117) yields

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ
′,i

−m:n−1(ϕθ)
∣∣∣ ≤ ρm+i 2Z1,i

ρ
+ (η1/3)m+i 2Z2

µ(D)µ′(D)

which, for b(n−m)/2c < i ≤ n, can be rewritten as

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ
′,i

−m:n−1(ϕθ)
∣∣∣ ≤ ρm+i

1 Z3,i (3.121)

where ρ1 = max(ρ, η1/3) ∈ (0, 1) and Z3,i = 2 (Z1,i ρ
−1 + Z2(µ(D)µ′(D))−1), with Z3,i < +∞,

P?-almost surely. This part will later lead us to (3.65).

For the second part of the Lemma 19, we have

I θ,µ,i−m:n−1(ϕθ)− I θ,µ,i−m:n−2(ϕθ)

= µLθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:n)
µLθ〈y−m:i−2〉 (hθ,i−1:n)

− µLθ〈y−m:i−2〉(Lϕθθ 〈yi−1〉hθ,i:n−1)
µLθ〈y−m:i−2〉 (hθ,i−1:n−1)

= (µ⊗ µ)L̄θ〈y−m:i−2〉 (Lϕθθ 〈yi−1〉 ⊗ Lθ〈yi−1〉)(hθ,i:n ⊗ hθ,i:n−1 − hθ,i:n−1 ⊗ hθ,i:n)
(µ⊗ µ)L̄θ〈y−m:i−2〉 (hθ,i−1:n ⊗ hθ,i−1:n−1)

. (3.122)
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If −m ≤ i < d(n−m)/2e, then n− i− 2 ≥ (n+m)/2− 1 ≥ L0, so that (3.113) ensures

1
n− i− 2

n−2∑
l=i+1

1K(yl) ≥ max
(

1− γ−, 1 + γ+

2

)

which allows us to apply Lemma 17 and repeat the computation in (3.94) to get

|hθ,i:n ⊗ hθ,i:n−1 − hθ,i:n−1 ⊗ hθ,i:n|

≤ ρn−i−2 (hθ,i:n ⊗ hθ,i:n−1 + hθ,i:n−1 ⊗ hθ,i:n) + 2 ηn−i−2 Gn−1

 n−2∏
l=i+1

G2
l

 (hθ,i:i+1 ⊗ hθ,i:i+1) .

Combining this with (3.122) and Lemma 16 under condition (3.113) leads to

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ,i−m:n−2(ϕθ)
∣∣∣ ≤ ρn−i−2

(
I θ,µ,i−m:n−1(ϕθ) + I θ,µ,i−m:n−2(ϕθ)

)
+

2 ηn−i−2
(∏n−2

l=i+1 V
2
l

)
Vn−1

Z4 µ (D)2 I θ,µ,i−m:i(ϕθ)

for some positive P?-a.s. finite Z4, similarly to (3.99). Using (3.118) and (3.119), this implies

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ,i−m:n−2(ϕθ)
∣∣∣ ≤ 2 ρn−i−2 Z1,i + 2 ηn−i−2

2 Z2

Z4 µ (D)2 Z1,i

which, for −m ≤ i < d(n−m)/2e, further gives

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ,i−m:n−2(ϕθ)
∣∣∣ ≤ ρn−i2 Z5,i (3.123)

where ρ2 = max(ρ, η2) ∈ (0, 1) and Z5,i = 2Z1,i(ρ−2 + Z2Z
−1
4 (µ(D) η2)−2).

By combining equations (3.121) and (3.123) while defining ρ∗ = max(ρ1, ρ2) ∈ (0, 1) and

Z∗i = max(Z3,i, Z5,i), we finally get, for all (m,n) ∈ N2 with n > N ,

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ
′,i

−m:n−1(ϕθ)
∣∣∣ ≤ ρm+i

∗ Z∗i

if d(n−m)/2e ≤ i ≤ n, and

∣∣∣I θ,µ,i−m:n−1(ϕθ)− I θ,µ,i−m:n−2(ϕθ)
∣∣∣ ≤ ρn−i∗ Z∗i

if −m ≤ i < d(n−m)/2e, which concludes the proof of Lemma 19.
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Proof of Lemma 20. The main challenge is to prove (3.67), as (3.68) follows directly from

applying (3.67) to the probability measures µ and µ′ = µLθ〈y−m′:−m−1〉. We have

(
∆E,θ
k,m,µ(ϕθ)−∆E,θ

k,m,µ′(ϕθ)
)

=
(
I θ,µ,k−m:k(ϕθ,k)− I

θ,µ′,k
−m:k (ϕθ,k)

)
+

k−1∑
i=−m

(
I θ,µ,i−m:k(ϕθ,i)− I

θ,µ′,i
−m:k (ϕθ,i) + I θ,µ

′,i
−m:k−1(ϕθ,i)− I θ,µ,i−m:k−1(ϕθ,i)

)

where I θ,µ,i−m:k(ϕθ,l) = Eθ,µ [ϕθ,l(Xi−1, Xi) | y−m:k]. By the triangle inequality, we get

∣∣∣∆E,θ
k,m,µ(ϕθ)−∆E,θ

k,m,µ′(ϕθ)
∣∣∣

≤
∣∣∣I θ,µ,k−m:k(ϕθ,k)− I

θ,µ′,k
−m:k (ϕθ,k)

∣∣∣
+

d(k−m)/2e−1∑
i=−m

(∣∣∣I θ,µ,i−m:k(ϕθ,i)− I
θ,µ,i
−m:k−1(ϕθ,i)

∣∣∣+ ∣∣∣I θ,µ′,i−m:k−1(ϕθ,i)− I θ,µ
′,i

−m:k (ϕθ,i)
∣∣∣)

+
k−1∑

i=d(k−m)/2e

(∣∣∣I θ,µ,i−m:k(ϕθ,i)− I
θ,µ′,i
−m:k (ϕθ,i)

∣∣∣+ ∣∣∣I θ,µ′,i−m:k−1(ϕθ,i)− I θ,µ,i−m:k−1(ϕθ,i)
∣∣∣)

By using Lemma 19, there exists a constant ρ ∈ (0, 1) and a P?-almost surely finite random

variable K ∈ N with K ≥ 2, such that for all (m, k, i) ∈ N3 with k > K, we have

∣∣∣I θ,µ,i−m:k(ϕθ,i)− I
θ,µ,i
−m:k−1(ϕθ,i)

∣∣∣+ ∣∣∣I θ,µ′,i−m:k−1(ϕθ,i)− I θ,µ
′,i

−m:k (ϕθ,i)
∣∣∣ ≤ 2 ρk−i Zi

if −m ≤ i < d(k −m)/2e, and

∣∣∣I θ,µ,i−m:k(ϕθ,i)− I
θ,µ′,i
−m:k (ϕθ,i)

∣∣∣+ ∣∣∣I θ,µ′,i−m:k−1(ϕθ,i)− I θ,µ,i−m:k−1(ϕθ,i)
∣∣∣ ≤ 2 ρm+i Zi

if d(k −m)/2e ≤ i ≤ k, for some P?-almost surely finite random variable Zi ∈ R+. These
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inequalities lead to

∣∣∣∆E,θ
k,m,µ(ϕθ)−∆E,θ

k,m,µ′(ϕθ)
∣∣∣ ≤ ρm+k Zk + 2

d(k−m)/2e−1∑
i=−m

ρk−i Zi

 + 2
 k−1∑
i=d(k−m)/2e

ρm+i Zi


≤ 2

(
max

j∈J−m,kK
Zj

)d(k−m)/2e−1∑
i=−m

ρk−i +
k∑

i=d(k−m)/2e
ρm+i


≤ 2

 k∑
j=−m

Zj

d(k−m)/2e−1∑
i=−∞

ρk−i +
+∞∑

i=d(k−m)/2e
ρm+i


≤ 2

 k∑
j=−m

Zj max(1, j2)
max(1, j2)

 2 ρ
k+m

2

1− ρ

≤ 4 max(k2,m2)
1− ρ

 +∞∑
j=−∞

Zj
max(1, j2)

 ρ k+m
2

≤ Z̃ max(k2,m2) ρ̃ k+m

where ρ̃ = ρ1/2 ∈ (0, 1) and

Z̃ = 4
1− ρ

 +∞∑
j=−∞

Zj
max(1, j2)

 .
By Assumption A9, we have E?[Zi] = E?[Z0] < +∞ for all i ∈ Z. The non-negativity of

Zj/max(1, j2) for all j ∈ Z allows us to apply the Fubini-Tonelli theorem, so that

E?

 +∞∑
j=−∞

Zj
max(1, j2)

 =
+∞∑
j=−∞

E? [Zj]
max(1, j2) = E? [Z0]

1 + 2
+∞∑
j=1

1
j2

 < +∞.

Thus, we obtain E?[Z̃] < +∞, which implies that Z̃ is P?-almost surely finite. This concludes

the proof of Lemma 20.

3.7 Numerical experiments

Despite the technical limitations of the conditions presented in Section 3.6, the consistency

and asymptotic Normality of posterior distributions are fairly general phenomena that one

can reasonably expect to witness in practice for a wide range of state-space models. In this
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section, we illustrate such phenomena numerically by looking at the posterior distributions of

the population dynamics and stochastic volatility models introduced in Chapter 1.

3.7.1 Diffusion models for population dynamics of red kangaroos

This illustration complements the example presented in Section 1.4.2 of Chapter 1. For each

population model M1, M2, and M3, the respective posteriors of the parameters are estimated

via SMC2 across 5 replications. The marginal posterior densities under models M1 to M3 are

respectively shown in Figures 3.1, 3.2, and 3.3. These estimated posterior densities appear

concentrated when contrasted with the vague independent priors σ, τ, b i.i.d.∼ Unif(0, 10), and

r ∼ Unif(−10, 10). The plots suggest that consistency and asymptotic Normality of the

posterior may still occur, even when the technical conditions of Section 3.6 are not met.

σ τ r b
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Posterior

Figure 3.1. Estimated marginal posterior densities of (σ, τ, r, b) under model M1, given 41
observations, with independent priors σ, τ, b i.i.d.∼ Unif(0, 10) and r ∼ Unif(−10, 10), plotted for
5 replications of SMC2 (solid lines). See Section 3.7.1.

3.7.2 Lévy-driven stochastic volatility models

This illustration complements the example presented in Section 1.3.3 of Chapter 1. For each

Lévy-driven stochastic volatility model M1 and M2, the respective posterior densities of the

parameters are estimated via SMC2 across 5 replications. The estimated marginal posterior

densities under models M1 and M2 are respectively shown in Figures 3.4 and 3.5, along with

the corresponding marginal prior densities for comparison. To facilitate the assessment of
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σ τ r
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Figure 3.2. Estimated marginal posterior densities of (σ, τ, r) under model M2, given 41
observations, with independent priors σ, τ i.i.d.∼ Unif(0, 10) and r ∼ Unif(−10, 10), plotted for 5
replications of SMC2 (solid lines). See Section 3.7.1.

σ τ

0

1

2

3

0

10

20

30

0.25 0.50 0.75 1.00 1.25 0.05 0.10 0.15 0.20

P
osterior

Figure 3.3. Estimated marginal posterior densities of (σ, τ ) under model M3, given 41 observations,
with independent priors σ, τ i.i.d.∼ Unif(0, 10), plotted for 5 replications of SMC2 (solid lines). See
Section 3.7.1.

posterior concentration, the marginal prior densities are plotted over the same support as

their corresponding marginal posterior densities. Similarly to the previous example, the

concentration of the posterior seems to be occurring, at least marginally on each parameter.

The only exception is for λ2 under model M2, whose posterior after 1000 observations appear

virtually identical to the prior. This can be explained by the posterior of w concentrating

near 1 as the observations are generated from M1, thus making the second factor irrelevant

in model M2. The parameter λ2 associated with the second factor is then not identifiable.
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Figure 3.4. Top panels: marginal prior densities µ, β i.i.d.∼ N (0, 10); ξ, ω2 i.i.d.∼ Exp (1/5) ; λ ∼
Exp(1), plotted over the support of the posterior densities. Bottom panels: estimated marginal
posterior densities under model M1, given 1000 observations, plotted for 5 replications of SMC2

(solid lines). See Section 3.7.2.
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Figure 3.5. Top panels: marginal prior densities µ, β i.i.d.∼ N (0, 10); ξ, ω2 i.i.d.∼ Exp (1/5) ; λ1 ∼
Exp(1); λ2 − λ1 ∼ Exp (1/2) ; w ∼ Unif(0, 1), plotted over the support of the posterior densities.
Bottom panels: estimated marginal posterior densities under model M2, given 1000 observations,
plotted for 5 replications of SMC2 (solid lines). See Section 3.7.2.
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3.8 Discussion

The recent advances on the asymptotic theory of the MLE in possibly misspecified state-space

models pave the way for envisioning a proof of posterior consistency and Bernstein-von

Mises type of results under satisfyingly weak conditions. Many of the ingredients needed

for the latter can be obtained as direct byproducts of the former, with the exception of the

uniform control of the observed Fisher information around the limit of the MLE. This control

over the Hessian of the log-likelihood virtually constitutes the only additional obstacle to

overcome, and leads to — by re-expressing that Hessian in terms of the full likelihood using

the standard Fisher and Louis identities — studying the asymptotic behavior of conditional

expectations of possibly unbounded test functions. In contrast with the study of the MLE,

our attempt suggests that the need for stronger conditions might be unavoidable, especially

regarding the mixing behavior of the sequence of observations. Our quest for a general proof

remains unfulfilled and will be the object of further research.

Most of the technical conditions under consideration are likely to be sufficient but far from

necessary, and despite the remaining elusiveness of a complete proof, one may still reasonably

hope for posterior consistency and asymptotic Normality to occur in practical setting for

a wide range of state-space models. In practice, one can rely on SMC samplers (Chopin,

2002; Del Moral et al., 2006; Chopin et al., 2013) to sequentially obtain approximations of

all the successive posterior distributions, thus providing an empirical way to heuristically

assess the concentration of the posterior distribution and monitor its closeness to Normality

as the number of observations increases.
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This appendix provides implementation details about the various sampling algorithms used

in this thesis, including SMC samplers (Appendix A.1), SMC2 (Appendix A.2), and unbiased

MCMC methods (Appendix A.3). For the sake of making this manuscript self-contained, we

provide simplified versions of these algorithms, along with some pseudo-code. More extensive

discussions about implementation choices can be found in the corresponding references.



A. Pseudo-code and algorithms

A.1 Implementation of SMC methods

This section presents general guidelines to implement SMC samplers (Chopin, 2002; Del

Moral et al., 2006; Del Moral, Doucet and Jasra, 2012; Duan and Fulop, 2015). Section A.1.1

and Algorithm 1 describe a non-adaptive version of SMC, which will be used when getting

unbiased estimators of marginal likelihoods is of importance, whereas Section A.1.2 and

Algorithm 2 present an adaptive version that will be used when efficiency and consistency of

such estimators are the main concerns. The descriptions in Algorithms 1 and 2 are abstracted

in order to encapsulate both SMC and more sophisticated SMC2 samplers.

A.1.1 SMC with fixed temperatures and kernels

Given T observations y1:T ∈ YT and a chosen number of particles Nθ ∈ N∗, an SMC

sampler produces, at each step t ∈ J0, T K, a set of Nθ particles θ(1:Nθ)
t = (θ(1)

t , ..., θ
(Nθ)
t ) with

associated normalized weightsW (1:Nθ)
t = (W (1)

t , ...,W
(Nθ)
t ), targeting the posterior distribution

p(dθ|y1:t) (Chopin, 2002; Del Moral et al., 2006). These particles are initialized as i.i.d. draws

θ
(1:Nθ)
0 from a proposal distribution q0(dθ). When the prior p(dθ) is proper and can be

sampled from, one can chose q0(dθ) = p(dθ). Otherwise, q0(dθ) should be chosen as an

approximation of the first proper posterior distribution. Going from an approximate sample

of the posterior p(dθ|y1:t) to an approximate sample of the next posterior p(dθ|y1:t+1) is

achieved by successively targeting the intermediate bridging distributions whose densities

are given by pγt,j (θ) ∝ p(θ|y1:t)p(yt+1|y1:t, θ)γt,j , where the γt,j ’s are well-chosen temperatures

satisfying 0 = γt,0 < γt,1 < ... < γt,Jt = 1 for some Jt ∈ N∗.

Algorithm 1 describes a non-adaptive version of SMC, where the inputs include a fixed

temperature schedule {0 = γt,0 < γt,1 < ... < γt,Jt = 1 : t ∈ J0, T − 1K}, a fixed resampling

schedule {(rt,1, ..., rt,Jt) ∈ {True, False}Jt : t ∈ J0, T − 1K}, and some corresponding proposal

densities qt,j each respectively approximating the targets pγt,j . We also assume that given
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A. Pseudo-code and algorithms

any particular θ(m)
t , we have a procedure to construct a non-negative estimator Ĝ(m)

t+1 of the

incremental likelihood p(yt+1|y1:t, θ
(m)
t ), such that Ẑ(m)

t+1 = ∏t+1
s=1 Ĝ

(m)
s is an unbiased estimator

of the likelihood p(y1:t+1|θ(m)
t ). This construction could possibly involve generating additional

random variables, of which one needs to appropriately keep track when resampling and

moving the corresponding particles in Step (B). When the likelihood is tractable, one can

directly use Ĝ(m)
t+1 = p(yt+1|y1:t, θ

(m)
t ) and Algorithm 1 reduces to a tempered version of the

iterated batch importance sampling algorithm (Chopin, 2002) with non-adaptive rejuvenation.

The use of unbiased estimators in place of exact likelihoods can be justified in the spirit

of random-weight importance sampling (Fearnhead, Papaspiliopoulos, Roberts and Stuart,

2010), and will be the key idea of the SMC2 samplers reviewed in Section A.2. When

resampling is triggered, the moves in Step (B) can be performed as many times as desired in

order to improve the rejuvenation rate of the particles, albeit at the expense of additional

computations. These move steps correspond to applying a particle Markov chain Monte

Carlo (PMCMC) kernel (Andrieu et al., 2010) that leaves the ongoing target pγt,j invariant.

Possible choices of resampling schemes for Step (A) of Algorithm 1 are discussed in Gerber

et al. (2017), and we will mainly use either multinomial or SSP resampling.

The output of SMC samplers consists of successive weighted samples (W (1:Nθ)
t , θ

(1:Nθ)
t )

which can be used to form the estimators ∑Nθ
m=1 W

(m)
t h(θ(m)

t ). As Nθ → +∞, these estimators

consistently estimate conditional expectations of the form E[h(Θ) | y1:t] with respect to

the posterior distributions Θ ∼ p(dθ | y1:t) for all t ∈ J1, T K and all suitably integrable

test functions h. Under appropriate resampling schemes (i.e. satisfying Assumption 2 in

Andrieu et al. (2010), e.g. multinomial or SSP), the non-adaptive SMC sampler presented

in Algorithm 1 also sequentially produces the following quantities

Ẑt =
t∏

s=1

Js−1∏
j=0

 Nθ∑
m=1

W
(m)
s,j w

(m)
s,j+1

 = Ẑt−1

Jt−1∏
j=0

 Nθ∑
m=1

W
(m)
t,j w

(m)
t,j+1

 (A.1)
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which are unbiased estimators of the marginal likelihoods p(y1:t) at every step t ∈ J1, T K, for

any fixed number of particles Nθ. The properties of such estimators have been extensively

studied in e.g. Del Moral (2004), Cérou et al. (2011), and references therein.

A.1.2 SMC with adaptive tempering and moves

For a fixed number of particles Nθ, the efficiency of the SMC sampler in Algorithm 1 may be

improved by choosing the temperatures, resampling schedule, and rejuvenation kernels in an

adaptive fashion, as described in Algorithm 2. Let Nθ/c be the minimum effective sample size

(ESS), with c ≥ 1 fixed at some desired value (e.g. c = 2 in our numerical experiments). Given

the current temperature γt,j < 1 and weighted particles (W (1:Nθ)
t,j , θ

(1:Nθ)
t,j ), step (ii) adaptively

determines the next temperature γt,j+1 ∈ (γt,j+1, 1] by setting it to its largest possible value,

while mitigating the degeneracy of the weights by maintaining the ESS above the desired

threshold Nθ/c. Starting from (γ0,0 , G
(1:Nθ)
0 , θ

(1:Nθ)
0,j ) with ESS(γ0,0) = Nθ, then at all time t we

have ESS(γt,j) ≥ Nθ/c given the current (γt,j , G(1:Nθ)
t+1 , θ

(1:Nθ)
t,j ), by construction. Besides, given

(γt,j , G(1:Nθ)
t+1 , θ

(1:Nθ)
t,j ), the function γ 7→ ESS(γ) is continuous. These two facts guarantee the

existence and uniqueness of the γt,j+1 defined in Step (ii) of Algorithm 2. Beside the effective

sample size, other diagnostics could be used to monitor the degeneracy of the weights.

Regarding the proposal density qt,j in Step (A) of Algorithm 2, we use a mixture of

Normals fitted to the latest set of weighted particles (W (1:Nθ)
t,j+1 , θ

(1:Nθ)
t,j ), using five components

by default throughout our numerical experiments. Using only one component in that mixture

corresponds to the Normal proposal discussed in Section 4.2 of Chopin (2002).

The output of this adaptive SMC sampler can be used in a similar fashion as described in

Section A.1.1. One should be warned that although the estimator of the marginal likelihood

given in (A.1) is still consistent as Nθ → +∞, it is no longer guaranteed to be unbiased when

using such an adaptive implementation of SMC. In practice, one could address this issue by

performing a preliminary run of adaptive SMC to store the relevant temperatures, resampling
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Algorithm 1 Non-adaptive SMC sampler

1. For m ∈ J1, NθK:

• Sample θ(m)
0,0 ∼ p(dθ) and set θ(m)

0 = θ
(m)
0,0 (initialize)

• Set W (m)
0 = W

(m)
0,0 = 1/Nθ

2. For t ∈ J0, T − 1K:

(a) For m ∈ J1, NθK: construct a non-negative estimator Ĝ(m)
t+1 of p(yt+1|y1:t, θ

(m)
t ) such

that Ẑ(m)
t+1 = ∏t+1

s=1 Ĝ
(m)
s unbiasedly estimates the likelihood p(y1:t+1|θ(m)

t )

(b) For j ∈ J0, Jt − 1K:

(i) For m ∈ J1, NθK, compute: w(m)
t,j+1 = (Ĝ(m)

t+1)γt,j+1−γt,jW
(m)
t,j (re-weight)

(ii) For m ∈ J1, NθK, compute: W (m)
t,j+1 = w

(m)
t,j+1 /

∑Nθ
i=1 w

(i)
t,j+1 (normalize weights)

(iii) If rt,j+1 = False, then for m ∈ J1, NθK, set: θ(m)
t,j+1 = θ

(m)
t,j

(iv) If rt,j+1 = True, then: (rejuvenate)

(A) Sample indexes A(1)
t,j , ..., A

(Nθ)
t,j from J1, NθK with

respective weights W (1:Nθ)
t,j+1 and with replacement (sample ancestors)

using a prespecified resampling scheme
(B) For m ∈ J1, NθK:

• Set W (m)
t,j+1 = 1/Nθ (reset weights)

• Set θ(m)
t,j+1 = θ

(A(m)
t,j )

t,j and Ẑ(m)
t+1 = Ẑ

(A(m)
t,j )

t+1 (resample particles)

• Propose new particles θ̃(m)
t,j+1 ∼ qt,j+1(θ(m)

t,j+1, dθ) and construct non-
negative estimators Ĝs(θ̃(m)

t,j+1) of p(ys+1|y1:s, θ̃
(m)
t,j+1) for s ∈ J0, T K such

that Ẑt+1(θ̃(m)
t,j+1) = ∏t+1

s=1 Ĝs(θ̃(m)
t,j+1) unbiasedly estimates p(y1:t+1|θ̃(m)

t,j+1)

• Accept θ(m)
t,j+1 = θ̃

(m)
t,j+1, Ĝ

(m)
1:t+1 = Ĝ1:t+1(θ̃(m)

t,j+1), and Ẑ(m)
t+1 = Ẑt+1(θ̃(m)

t,j+1)

with probability: min
(

1, p(θ̃
(m)
t,j+1)

p(θ(m)
t,j+1)

Ẑt+1(θ̃(m)
t,j+1)γt,j+1

Ẑ
(m) γt,j+1
t+1

qt,j+1(θ̃(m)
t,j+1,θ

(m)
t,j+1)

qt,j+1(θ(m)
t,j+1,θ̃

(m)
t,j+1)

)

(c) When γt,j+1 = 1 (i.e. j = Jt − 1), then for m ∈ J1, NθK:

• Set θ(m)
t+1 = θ

(m)
t+1,0 = θ

(m)
t,Jt and W

(m)
t+1 = W

(m)
t+1,0 = W

(m)
t,Jt

3. Output the weighted samples (W (1:Nθ)
t , θ

(1:Nθ)
t )t∈J1,T K respectively targeting the successive

posterior distributions p(dθ | y1:t) for all t ∈ J1, T K.
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times, and fitted kernels during the course of the algorithm. One would then perform a

second run using non-adaptive SMC using the previously stored algorithmic parameters.

A.2 Implementation of SMC2 methods

For state-space models, the incremental likelihoods of the form p(yt+1 | y1:t, θ
(m)
t ) correspond

to typically intractable integrals with respect to the latent states and cannot be directly

evaluated (except in simple cases, e.g. finite discrete space for the latent states, linear

Gaussian state-space models), so that precautions must be taken. Fortunately, particle

filters — reviewed in Appendix A.2.1 — can provide unbiased estimators of the likelihoods

in state-space models, which can in turn be used in place of the unavailable likelihoods

to yield the SMC2 algorithm reviewed in Section A.2.2.

A.2.1 Particle filters

In the context of a state-space model with fixed parameter θ ∈ T, initial distribution µθ,

transition kernel fθ, and observation density gθ, some notable instances of SMC are known

as particle filters. Particle filters (e.g. see Section 2.1 in Chopin et al., 2013) take as inputs a

desired number Nx of particles, a collection of observations y1:T ∈ YT , a parameter θ ∈ T, and

a collection of proposal distributions {qt,θ(dxt | xt−1)} which can be sampled from. It outputs

a sequence of properly weighted particles (W (1:Nx)
t,θ , X

(1:Nx)
t ) targeting the filtering distribution

p(xt | y1:t, θ) for all t ∈ J1, T K, as described in Algorithm 3. Similarly to the discussion of

generic SMC samplers in Section A.1.1, various resampling schemes may be considered in Step

3(a) (e.g. see Liu and Chen, 1998; Pitt and Shephard, 1999), although we will limit ourselves

to multinomial resampling to facilitate the analysis. As long as one can sample from the

transition kernel fθ, particle filters can be run by choosing qt,θ(dxt | xt−1) = fθ(dxt | xt−1) to

simplify the importance weights appearing in Step 3(b). Such a choice leads to the standard
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Algorithm 2 Adaptive SMC sampler

1. For m ∈ J1, NθK:

• Sample θ(m)
0,0 ∼ p(dθ) and set θ(m)

0 = θ
(m)
0,0 (initialize)

• Set W (m)
0 = W

(m)
0,0 = 1/Nθ

• Set j = 0 and γ0,0 = 0

2. For t ∈ J0, T − 1K:

• For m ∈ J1, NθK: construct a non-negative estimator Ĝ(m)
t+1 of p(yt+1|y1:t, θ

(m)
t ) such

that Ẑ(m)
t+1 = ∏t+1

s=1 Ĝ
(m)
s unbiasedly estimates the likelihood p(y1:t+1|θ(m)

t )
• While γt,j < 1:

(a) Find the next temperature adaptively as follows:

(i) Define the effective sample size as a function of γ :

ESS (γ) =

(∑Nθ
m=1 W

(m)
t,j

(
Ĝ

(m)
t+1

)γ−γt,j)2

∑Nθ
m=1

(
W

(m)
t,j

(
Ĝ

(m)
t+1

)γ−γt,j)2 (assess degeneracy)

(ii) Set γt,j+1 = max{γ ∈ (γt,j, 1] : ESS (γ) ≥ Nθ/c} (adapt temperature)

(b) For m ∈ J1, NθK, set w(m)
t,j+1 = (Ĝ(m)

t+1)γt,j+1−γt,jW
(m)
t,j (re-weight)

(c) For m ∈ J1, NθK, set W (m)
t,j+1 = w

(m)
t,j+1 /

∑Nθ
i=1 w

(i)
t,j+1 (normalize weights)

(d) If γt,j+1 < 1, then:

(A) Use the weighted sample (W (1:Nθ)
t,j+1 , θ

(1:Nθ)
t,j ) to adaptively construct a

proposal density qt,j+1 that approximates pγt,j+1 .

(B) Rejuvenate particles by performing step (iv) of Algorithm 1

(e) If γt,j+1 = 1, then for m ∈ J1, NθK:

• Set θ(m)
t+1 = θ

(m)
t+1,0 = θ

(m)
t,j+1 and W

(m)
t+1 = W

(m)
t+1,0 = W

(m)
t,j+1

3. Output the weighted samples (W (1:Nθ)
t , θ

(1:Nθ)
t )t∈J1,T K respectively targeting the successive

posterior distributions p(dθ | y1:t) for all t ∈ J1, T K.
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bootstrap particle filter (Gordon, Salmond and Smith, 1993). As a byproduct, non-adaptive

particle filters also provide unbiased estimators of the likelihood p(y1:t|θ) for all t ∈ J1, T K.

Algorithm 3 Particle filter

1. For n ∈ J1, NxK: (assimilate first observation)

• Sample X(n)
1 ∼ q1,θ(dx1) independently (initialize)

• Set w(n)
t,θ = µθ(X(n)

1 ) gθ(y1 |X(n)
1 ) / q1,θ(X(n)

1 ) (re-weight)

2. For n ∈ J1, NxK:

• Set W (n)
1,θ = w

(n)
1,θ /

∑Nx
i=1 w

(i)
1,θ (normalize weights)

3. For t ∈ J2, T K: (assimilate next observations)

(a) Sample indexes A(1)
t−1, ..., A

(Nx)
t−1 from J1, NxK with

respective weights W (1:Nx)
t−1,θ and with replacement (sample ancestors)

using a prespecified resampling scheme
(b) For n ∈ J1, NxK:

• Sample X(n)
t ∼ qt,θ(dxt |X

(A(n)
t−1)

t−1 ) (move particles)

• Set w(n)
t,θ = fθ(X(n)

t |X
(A(n)
t−1)

t−1 ) gθ(yt |X(n)
t ) / qt,θ(X(n)

t |X
(A(n)
t−1)

t−1 ) (re-weight)

(c) For n ∈ J1, NxK:

• Set W (n)
t,θ = w

(n)
t,θ /

∑Nx
i=1 w

(i)
t,θ (normalize weights)

4. Output the weighted samples (W (1:Nx)
t,θ , X

(1:Nx)
t )t∈J1,T K respectively targeting the succes-

sive filtering distributions p(dxt | y1:t, θ) for all t ∈ J1, T K. As a byproduct,

Ẑt,θ =
t∏

s=1

(
1
Nx

Nx∑
n=1

w
(n)
t,θ

)

is an unbiased estimator of the likelihood p(y1:t|θ) for all t ∈ J1, T K.

A.2.2 SMC2 algorithm

Although the incremental likelihoods p(yt+1 | y1:t, θ
(m)
t ) — needed for the re-weighting step in

SMC algorithms — cannot be directly evaluated in the context of state-space models, we
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can run a particle filter conditional on θ(m)
t (Section A.2.1 and Algorithm 3) to obtain non-

negative estimators Ĝ(m)
t+1 of the incremental likelihoods p(yt+1|y1:t, θ

(m)
t ), while ensuring that

Ẑ
(m)
t+1 = ∏t+1

s=1 Ĝ
(m)
s is an unbiased estimator of the likelihood p(y1:t+1|θ(m)

t ) for all t ∈ J1, T K.

The SMC2 algorithm (Chopin et al., 2013) then amounts to an SMC sampler on an extended

target space, where each particle θ(m)
t is augmented to form (θ(m)

t ,PF(m)
t ), with PF(m)

t denoting

all the variables generated by running a particle filter with observations y1:t and parameter θ(m)
t .

In particular, these variables contain a system of Nx weighted particles (W (1:Nx,m)
x,t , X

(1:Nx,m)
t )

that is used to get the required unbiased estimators of the likelihood p(y1:t | θ(m)
t ). Our

implementation uses bootstrap particle filters (Gordon et al., 1993) for simplicity, but more

efficient versions — such as the auxiliary particle filter (Pitt and Shephard, 1999) — could

be used within SMC2, as illustrated in Golightly and Kypraios (2017). When the θ(m)
t ’s

get rejuvenated, their respective PF(m)
t ’s are resampled and re-generated accordingly. As a

particular case of an SMC sampler, the discussion from Section A.1.2 readily applies to SMC2

and allows for adaptive choices of temperatures, resampling times, and proposal distributions.

An additional layer of adaption consists in allowing the size Nx of the particle system attached

to each θ(m)
t to dynamically grow during the course of the algorithm, i.e. one starts with a

small initial number Nx to ease the computational burden, and adaptively doubles it whenever

the acceptance rate of the moves in the rejuvenation phase are below some desired threshold.

Increasing Nx is achieved by using conditional SMC steps, which sample new PF(m)
t ’s made

of a larger number of particles conditional on an existing path from the current PF(m)
t ’s, as

detailed in Section 3.6.2 of Chopin et al. (2013). Other relevant considerations are discussed

e.g. in Chopin, Ridgway, Gerber and Papaspiliopoulos (2015) and Duan and Fulop (2015).

The output of SMC2 consists of a succession of weighted samples (W (1:Nθ)
θ,t , θ

(1:Nθ)
t )

targeting the posterior distributions p(dθ | y1:t) for all t ∈ J1, T K, with each θ
(m)
t carry-

ing its attached weighted particles (W (1:Nx,m)
x,t , X

(1:Nx,m)
t ) targeting the filtering distribu-

tions p(dxt | y1:t, θ
(m)
t ). For all t ∈ J1, T K and all suitably integrable test functions h,
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conditional expectations E[h(Θ, Xt) | y1:t] with respect to the joint posterior distributions

(Θ, Xt) ∼ p(dθ | y1:t)p(dxt | y1:t, θ) can be consistently estimated by estimators of the form∑Nθ
m=1 W

(m)
θ,t

∑Nx
n=1 W

(n,m)
x,t h(θ(m)

t , X
(n,m)
t ), as Nθ → +∞. As an SMC sampler, the non-adaptive

version of SMC2 also produces unbiased estimators of the marginal likelihoods p(y1:t) for

all t ∈ J1, T K, similarly to the ones from (A.1).

A.3 Implementation of unbiased MCMC methods

Many popular MCMC algorithms (see e.g. Robert and Casella, 1999; Liu, 2008; Brooks

et al., 2011; Green et al., 2015) have been successfully debiased by the use of well-designed

couplings (Jacob et al., 2017; Middleton et al., 2018; Heng and Jacob, 2019; Middleton et al.,

2019). In this appendix, we focus on unbiased variants of the Metropolis-Hastings (MH)

algorithm targeting posterior distributions, which are used in Section 2.3 of Chapter 2.

When targeting posterior distributions, the standard MH algorithm (Hastings, 1970)

requires evaluations of the likelihood to compute the acceptance ratio of new proposals.

In the context of state-space models where likelihoods are intractable, the MH algorithm

can still be run by simply substituting the unavailable likelihoods by unbiased estimators

obtained from particle filters (Appendix A.2.1), leading to new variants known as the particle

independent Metropolis-Hastings (PIMH) and the particle marginal Metropolis-Hastings

(PMMH) algorithms (Andrieu et al., 2010, Sections 2.4.1 and 2.4.2 respectively). The

substitution of the likelihood by an unbiased estimator can be justified in the spirit of

pseudo-marginal methods (Andrieu and Roberts, 2009) and these particle MH algorithms

turn out to be exact MH algorithms targeting an extended distribution, for which one of the

marginals coincide with the original target distribution of interest. Bringing these algorithms

into the unbiased MCMC toolbox has been recently achieved, leading to the coupled PMMH

(Middleton et al., 2018) and the coupled PIMH (Middleton et al., 2019) algorithms. We
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are interested in the latter, and more specifically in the use of SMC samplers as proposal

distributions (Appendix A.3.1) within coupled PIMH algorithms (Appendix A.3.2).

A.3.1 SMC samplers as joint proposal distributions

As reviewed in Appendices A.1 and A.2, one run of SMC over T observations produces

a collection of weighted particles (W (m)
θ,t , θ

(m)
t )(t,m)∈J1,T K×J1,Nθ K approximating the successive

posterior distributions (p(dθ|y1:t))t∈J1,T K, and a collection of non-negative unbiased esti-

mators (Ẑ(m)
t )(t,m)∈J1,T K×J1,Nθ K of the successive evidences (Zt)t∈J1,T K = (p(y1:t))t∈J1,T K. In

the case of SMC2 samplers, each θ
(m)
t also carries its own system of weighted particles

(W (n,m)
x,t , X

(n,m)
t )n∈J1,NxK targeting the filtering distributions p(dxt | y1:t, θ

(m)
t ). Algorithm 4 in

Appendix A.3.2 explains how to turn the output of an SMC sampler into a joint proposal

distribution that can be used in coupled PIMH algorithms. The unbiasedness of the Ẑ(m)
t ’s will

be crucial to ensure the validity of the coupled PIMH, as the latter relies on a pseudo-marginal

MH kernel, for which unbiasedness of the likelihood estimators is paramount (Andrieu and

Roberts, 2009; Andrieu et al., 2010). This prohibits the use of any adaptive resampling

schemes when using SMC-based proposals within coupled PIMH algorithms. As discussed

in Appendix A.1.2, adaptation can still be used in a preliminary run, as a way to tune the

algorithmic parameters before performing the final run with non-adaptively.

A.3.2 Coupled PIMH

As inspired by Section 2.4 from Middleton et al. (2018), our implementation of coupled

PIMH concurrently runs T pairs of Markov chains, such that, for t ∈ J1, T K, pair t evolves

according to a coupled particle MH kernel targeting the posterior p(dθ|y1:t) at horizon t.

The proposals for the MH kernels at each horizon t ∈ J1, T K can be generated jointly by

a run of SMC or SMC2 over the whole time horizon J1, T K. Using Algorithm 4, one run

of SMC provides T proposed draws that can be fed to the respective T pairs of chains, as
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Algorithm 4 SMC as a joint proposal distribution

1. Perform one run of SMC over all T observations to produce weighted particles
(W (1:Nθ)

θ,1:T , θ
(1:Nθ)
1:T ), non-negative unbiased estimators Ẑ(1:Nθ)

1:T of evidences [and accessory
weigthed particles (W (1:Nx,1:Nθ)

x,1:T , X
(1:Nx,1:Nθ)
1:T ) for SMC2] as described in Appendix A.3.1.

2. For t ∈ J1, T K:

• Draw m from J1, NθK with respective probabilities W (1:Nθ)
θ,t .

• Set θ∗t = θ
(m)
t .

• Set Z∗t = Ẑ
(m)
t [and (W ∗(1:Nx)

x,t , X
∗(1:Nx)
t ) = (W (1:Nx,m)

x,t , X
(1:Nx,m)
t ) for SMC2].

3. Jointly output (θ∗t , Z∗t )t∈J1,T K [and (W ∗(1:Nx)
x,t , X

∗(1:Nx)
t )t∈J1,T K for SMC2] as proposed

draws for each corresponding horizon t ∈ J1, T K.

By construction the θ∗t ’s are drawn from the respective particle approximations∑Nθ
m=1 Wθ,tδθ(m)

t
of the successive posterior distributions p(dθ|y1:t) and the Z∗t ’s unbiasedly

estimate p(y1:t) for all t ∈ J1, T K.

explained in Algorithm 5. Under mild conditions, the coupled PIMH algorithm produces

estimators (2.13) that are unbiased, while having both finite variances and expected costs

(Middleton et al., 2019, Proposition 3). The distribution of the meeting times is derived in

Proposition 8 of Middleton et al. (2019), and can be conveniently simulated so as to help

anticipate and tune the behavior of the couple PIMH algorithm, as explained in Section 2.3.4

of Chapter 2. Further guidelines and theoretical guarantees for coupled PIMH algorithms

can be found in Middleton et al. (2019).
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Algorithm 5 Coupled PIMH

1. Initialization: set n = 1 and τt = +∞ for all t ∈ J1, T K.

2. Use SMC [or SMC2] as a proposal via Algorithm 4 to sample (θ(0)
t , Ẑ

(0)
t )t∈J1,T K

[and (W (1:Nx,0)
x,t , X

(1:Nx,0)
t )t∈J1,T K for SMC2]. (initialize chain 1 for all horizons)

3. While n < max(m, τ1:T ): (if n < m or one pair of chains still haven’t met)

• Use SMC [or SMC2] as a proposal via Algorithm 4 to propose (θ∗t , Ẑ∗t )t∈J1,T K

[and (W (1:Nx,∗)
x,t , X

(1:Nx,∗)
t )t∈J1,T K for SMC2]. (generate proposals for all horizons)

• For t ∈ J1, T K: (grow one pair of coupled chains for each horizon t)

(a) Draw Ut ∼ Unif(0, 1).
(b) If Ut ≤ min(1, Ẑ∗t /Ẑ

(n−1)
t ): set (θ(n)

t , Ẑ
(n)
t ) = (θ∗t , Ẑ∗t ) (chain 1 accepts proposal)

[and (W (1:Nx,n)
x,t , X

(1:Nx,n)
t ) = (W (1:Nx,∗)

x,t , X
(1:Nx,∗)
t ) for SMC2].

Else: set (θ(n)
t , Ẑ

(n)
t ) = (θ(n−1)

t , Ẑ
(n−1)
t ) (chain 1 rejects proposal)

[and (W (1:Nx,n)
x,t , X

(1:Nx,n)
t ) = (W (1:Nx,n−1)

x,t , X
(1:Nx,n−1)
t ) for SMC2].

(c) If n = 1: set Z̃(n−2)
t = Ẑ∗t by convention. (chain 2 initialized as first proposal)

(d) If Ut ≤ min(1, Ẑ∗t /Z̃
(n−2)
t ) : (chain 2 accepts proposal)

set (θ̃(n−1)
t , Z̃

(n−1)
t ) = (θ∗t , Ẑ∗t ).

[and (W̃ (1:Nx,n−1)
x,t , X̃

(1:Nx,n−1)
t ) = (W (1:Nx,∗)

x,t , X
(1:Nx,∗)
t ) for SMC2].

Else: (chain 2 rejects proposal)

set (θ̃(n−1)
t , Z̃

(n−1)
t ) = (θ̃(n−2)

t , Z̃
(n−2)
t ).

[and (W̃ (1:Nx,n−1)
x,t , X̃

(1:Nx,n−1)
t ) = (W̃ (1:Nx,n−2)

x,t , X̃
(1:Nx,n−2)
t ) for SMC2].

(e) If Ut ≤ min(1, Ẑ∗t /Ẑ
(n−1)
t , Ẑ∗t /Z̃

(n−2)
t ): (both chains have accepted)

set τt = n (chains for horizon t have met after n steps)
(f) Set n = n+ 1

4. Output the pair Vt = (θ(n)
t )n∈J0,max(m,τ1:T )−1K andWt = (θ̃(n)

t )n∈J0,max(m,τ1:T )−2K of coupled
chains for each time horizon t ∈ J1, T K.

[along with the corresponding systems of particles (W (1:Nx,n)
x,t , X

(1:Nx,n)
t )n∈J0,max(m,τ1:T )−1K

and (W̃ (1:Nx,n)
x,t , X̃

(1:Nx,n)
t )n∈J0,max(m,τ1:T )−2K for SMC2]
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This appendix provides additional examples to illustrate the robustness of the H-score to

vague priors (Appendix B.1) and its consistency for linear time series models (Appendix B.2).

We also present a rigorous construction of the H-score for discrete observations (Appendix

B.3), and we provide detailed proofs (Appendices B.4 and B.5) of the results from Chapter 1.
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B.1 Illustration of robustness with Normal models

This section complements Section 1.2.3 of Chapter 1. We consider the two Normal models

M1 : Y1, ..., YT | θ1
i.i.d.∼ N

(
θ1, 1

)
, θ1 ∼ N

(
0, σ2

0

)
,

M2 : Y1, ..., YT | θ2
i.i.d.∼ N (0, θ2) , θ2 ∼ Inv-χ2

(
ν0, s

2
0

)
.

The positive hyperparameters are chosen as ν0 = 0.1 and s2
0 = 1. We compareM1 andM2 using

observations generated as Y1, ..., YT
i.i.d.∼ N (1, 1), for different log(σ0) ∈ {0, 150, 350}, i.e. for

increasingly vague priors on µ. In this setting, M1 is well-specified whereas M2 is misspecified.

Under M1, we have Yt |Y1:t−1 ∼ N
(
µt−1, σ

2
t−1 + 1

)
for all t ∈ J0, T K by conjugacy,

with σ2
t = (t + σ−2

0 )−1 and µt = σ2
t

∑t
i=1 Yi for all t ∈ J1, T K. Under model M2, we

have Yt |Y1:t−1 ∼ tνt−1

(
0, s2

t−1

)
for all t ∈ J0, T K by conjugacy, with νt = ν0 + t and

st = (ν0s
2
0 + ∑t

i=1 Y
2
i )/νt for all t ∈ J1, T K. Given Y1:T , these conjugacy results allow

us to compute the log-Bayes factor and H-factor analytically.

We generate 100 independent samples, each consisting of T = 1000 i.i.d. draws from

N (1, 1). For each sample Y1:T and every log(σ0) ∈ {0, 150, 350}, we compute the log-Bayes

factor and H-score ofM1 againstM2. The results are shown in Figure B.1. For any fixed value

of σ0, both the H-factor and log-Bayes factor are consistent, in the sense of asymptotically

choosing the correct model M1, as T → +∞. However, for any fixed T , no matter how large,

there always exists a large enough σ0 such that the log-Bayes factor chooses the wrong model

M2 with arbitrarily high probability. This is because log pM1(Y1:T ) behaves equivalently to

− log(σ0) as σ0 → +∞. This sensitivity of the log-Bayes factor to the vagueness of priors is

arguably undesirable, as it can lead to choosing a misspecified model over a well-specified

one. This artifact is even more unsettling when considering that, with T = 1000 observations,

all three prior specifications log(σ0) ∈ {0, 150, 350} essentially lead to the same posterior on
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µ, i.e. the same model fit in some sense. By contrast, the H-factor is virtually unchanged

when σ0 is increased beyond a certain value.

HF 1 vs. 2

log−BF 1 vs. 2

HF 1 vs. 2

log−BF 1 vs. 2

HF 1 vs. 2

log−BF 1 vs. 2

log(σ0) = 0 log(σ0) = 150 log(σ0) = 350

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

−200

0

200

400

600

Number of observations

Figure B.1. Exact log-Bayes factors (log-BF) and H-factors (HF) of M1 against M2, computed for
100 independent samples (thin solid lines) generated as i.i.d. N (1, 1), under three increasingly vague
priors on µ: log(σ0) = 0 (left panel), log(σ0) = 150 (middle panel), log(σ0) = 350 (right panel). See
Appendix B.1.

B.2 Illustration of consistency with ARMA models

Define the stationarity triangle S = {(φ1, φ2) ∈ R2 : |φ2| < 1, φ2 − φ1 < 1, φ2 + φ1 < 1}.

Let Unif(S) denote the bivariate uniform distribution on the set S and let (εt)t∈N denote a

sequence of i.i.d. standard Normal variables. We consider the following time series models,

corresponding respectively to AR(1), AR(2), and MA(1) models.

M1: Y1 |φ, σ2 ∼ N (0, σ2/(1− φ2)) ; Yt = φYt−1 + σεt , ∀t ≥ 2;

with independent priors φ ∼ Unif(−1, 1) and σ2 ∼ Inv-χ2(ν0, s
2
0).

M2: Y1, Y2 |φ1, φ2, σ
2 i.i.d.∼ N

(
0, (1−φ2)σ2/(1+φ2)

(1−φ2−φ1)(1−φ2+φ1)

)
; Yt = φ1Yt−1 + φ2Yt−2 + σεt , ∀t ≥ 3;

with independent priors (φ1, φ2) ∼ Unif(S) and σ2 ∼ Inv-χ2(ν0, s
2
0).
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M3: Yt = σ (εt + θεt−1) , ∀t ≥ 1;

with independent priors θ ∼ Unif(−1, 1) and σ2 ∼ Inv-χ2(ν0, s
2
0).

The positive hyperparameters are set to ν0 = 1 and s2
0 = 1. First, we consider a non-nested

setting by comparing M1 and M3 under the following two data-generating processes:

(1) AR(1): Y1 ∼ N (0, 1) and Yt = 0.6Yt−1 + 0.8 εt , i.e.M1 is well-specified while M3 is not.

(2) MA(1): Yt = εt + 0.5 εt−1 , i.e.M3 is well-specified while M1 is not.

ARMA models can be regarded as particular cases of linear Gaussian state-space models,

whose likelihood can be computed using Kalman filters. Thus, H-scores of ARMA models

can be estimated by directly using SMC in conjunction with Kalman filters, instead of more

sophisticated SMC2 algorithms. For each data-generating process, we generate T = 1000

observations and estimate the H-score of M1 and M3 via SMC with Nθ = 1024 particles.

The estimated H-factors and log-Bayes factors of M1 against M3 are shown in Figure B.2.

We see that the H-factor asymptotically chooses the correct model.

We now consider a nested setting by comparing M1 and M2 under the following two

data-generating processes:

(3) AR(1): Y1 ∼ N (0, 1) and Yt = 0.6Yt−1 + 0.8 εt , i.e. both M1 and M2 are well-specified.

(4) AR(2): Y1, Y2
i.i.d.∼ N (0, 1) and Yt = 0.25Yt−1 +0.5Yt−2 +0.75 εt , i.e.M2 is well-specified

but M1 is not.

The data-generating processes are initialized at their respective stationary distributions. For

each case, we generate T = 1000 observations and estimate the H-score of M1 and M2 via

SMC with Nθ = 1024 particles. The respective H-factors and log-Bayes factors of M1 against

M2 are shown in Figure B.3. Case 3 suggests that, when dealing with nested well-specified

models, the H-factor asymptotically favors the model of smallest dimension.
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Figure B.2. Estimated log-Bayes factors (log-BF) and H-factors (HF) of M1 against M3, computed
for 5 replications (thin solid lines), under two data-generating processes: AR(1) (Case 1) and MA(1)
(Case 2). See Appendix B.2.
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Figure B.3. Estimated log-Bayes factors (log-BF) and H-factors (HF) of M1 against M2, computed
for 5 replications (thin solid lines), under two data-generating processes: AR(1) (Case 3) and AR(2)
(Case 4). See Appendix B.2.
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B.3 Propriety of the H-score for discrete observations

0-homogeneous score functions for discrete observations are proper if and only if they are

super-gradients of 1-homogeneous concave entropy functions (McCarthy, 1956; Hendrickson

and Buehler, 1971). It follows that we can construct a proper 0-homogeneous scoring rule

in terms of a collection of homogeneous functions over the cliques of an undirected graph

on the space Y = Ja1, b1 K × ... × Jady , bdy K (Dawid et al., 2012). More precisely, let G

denote an undirected graph with a set of nodes equal to Y and a set of edges defined as

{(y1, y2) ∈ Y2 : y1 − y2 ∈ {−2ek,−ek, ek, 2ek} for some k ∈ J1, dy K}. Here ek denotes the

canonical vector of Zdy that has all coordinates equal to 0 except for its k-th coordinate that

equals 1. The cliques (maximal complete subsets) of this graph are of the form {y−ek, y, y+ek}.

Define the function H : (0,∞)3 → R as H(p1, p2, p3) = −(p3 − p1)2/p2. This function is

1-homogeneous and concave. Indeed, for any λ > 0, we have H(λp1, λp2, λp3) = λH(p1, p2, p3).

Besides, the Hessian of H at any (p1, p2, p3) ∈ (0,∞)3 is given by

−2(p3−p1)2

p3
2

2(p3−p1)
p2

2
−2(p3−p1)

p2
2

2(p3−p1)
p2

2
− 2
p2

2
p2

−2(p3−p1)
p2

2

2
p2

− 2
p2

 .

For all (p1, p2, p3) ∈ (0,∞)3, the determinants of the extracted matrices

(
−2(p3−p1)2

p3
2

)
,
(
− 2
p2

)
,

−2(p3−p1)2

p3
2

2(p3−p1)
p2

2
2(p3−p1)

p2
2

− 2
p2

 ,(− 2
p2

2
p2

2
p2

− 2
p2

)
, and

−2(p3−p1)2

p3
2

−2(p3−p1)
p2

2

−2(p3−p1)
p2

2
− 2
p2


are respectively negative, negative, 0, 0, and 0. The determinant of the Hessian is also

equal to 0. In other words, all the principal minors of the negative Hessian are non-

negative. By Sylvester’s criterion (Horn and Johnson, 1985), this implies that the negative

Hessian of H at (p1, p2, p3) is positive semi-definite, for all (p1, p2, p3) ∈ (0,∞)3, which

proves that the function H is concave.
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Following the construction from Section 3.3 of Dawid et al. (2012), we can define, for

all probability mass functions p on Y, the concave entropy function

EHD(p) = −
dy∑
k=1

∑
y∈Y s.t.

ak<y(k)<bk

p(y)
(
p(y + ek)− p(y − ek)

2 p(y)

)2

, (B.1)

whose associated score function is given by

HD(y, p) =
dy∑
k=1
HD
k (y, p) ,

where

HD
k (y, p) =



p(y+2 ek)−p(y)
2 p(y+ek) if y(k) = ak,

p(y+2 ek)−p(y)
2 p(y+ek) +

(
p(y+ek)−p(y−ek)

2 p(y)

)2
if y(k) = ak + 1,

p(y+2 ek)−p(y)
2 p(y+ek) − p(y)−p(y−2 ek)

2 p(y−ek) +
(
p(y+ek)−p(y−ek)

2 p(y)

)2
if ak + 1 < y(k) < bk − 1,

−p(y)−p(y−2 ek)
2 p(y−ek) +

(
p(y+ek)−p(y−ek)

2 p(y)

)2
if y(k) = bk − 1,

−p(y)−p(y−2 ek)
2 p(y−ek) if y(k) = bk.

The concavity of the entropy function guarantees that HD is a proper scoring rule. The

entropy in (B.1) can be interpreted as a discrete analog of the entropy function of the

H-score for continuous observations, which is given by −
∫
Y ‖∇y log p(y)‖2 p(y)dy under mild

regularity assumptions (Hyvärinen, 2005; Dawid and Musio, 2015).

The alternative definition using forward differences, given by


2
(
p(y+ek)−p(y)

p(y)

)
+
(
p(y+ek)−p(y)

p(y)

)2
if y(k) = ak,

2
(
p(y+ek)−p(y)

p(y) − p(y)−p(y−ek)
p(y−ek)

)
+
(
p(y+ek)−p(y)

p(y)

)2
if ak < y(k) < bk,

−2
(
p(y)−p(y−ek)
p(y−ek)

)
if y(k) = bk,

is a particular case of the pair scoring rule from Example 4.1 in Dawid et al. (2012), where

we choose the concave function G to be u 7→ −(u − 1)2.
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B.4 Identities for the H-score

In this section, we fix a model M and drop the dependence on the model in the notation.

Equations (1.4), (1.11), and (1.12) result from algebraic manipulations, under assumptions

guaranteeing the existence of all the relevant derivatives and integrals, as well as enabling

differentiation under the integral sign. Such assumptions can be stated as follows.

Assumption A10. For all t ∈ N∗, the following conditions hold:

(a) θ 7→ p(yt|y1:t−1, θ) p(θ|y1:t−1) is integrable on T for all y1:t ∈ Yt.

(b) yt 7→ p(yt|y1:t−1, θ) is twice differentiable on Y for all (y1:t−1, θ) ∈ Yt−1 × T.

(c) For all k ∈ J1, dyK, there exist integrable functions h1,k,t and h2,k,t such that

∣∣∣∣∣∣∂p(yt|y1:t−1, θ)
∂yt(k)

p(θ|y1:t−1)

∣∣∣∣∣∣ ≤ h1,k,t(θ) and

∣∣∣∣∣∣∂
2p(yt|y1:t−1, θ)

∂yt2(k)
p(θ|y1:t−1)

∣∣∣∣∣∣ ≤ h2,k,t(θ)

for all (y1:t, θ) ∈ Yt × T.

Assumption A11. For all t ∈ N∗, the following conditions hold:

(a) xt 7→ p(xt|y1:t−1, θ) gθ(yt|xt) is integrable on X for all (y1:t, θ) ∈ Yt × T.

(b) yt 7→ gθ(yt|xt) is twice differentiable on Y for all (θ, xt) ∈ T× X.

(c) For all k ∈ J1, dyK, there exist integrable functions h3,k,t and h4,k,t such that
∣∣∣∣∣∣∂gθ(yt|xt)∂yt(k)

p(xt|y1:t−1, θ)

∣∣∣∣∣∣ ≤ h3,k,t(xt) and

∣∣∣∣∣∣∂
2gθ(yt|xt)
∂yt2(k)

p(xt|y1:t−1, θ)

∣∣∣∣∣∣ ≤ h4,k,t(xt)

for all (y1:t, θ, xt) ∈ Yt × T× X.
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B.4.1 Proof of (1.4)

Consider some generic prior p(θ) and likelihood p(y|θ). Assume that θ 7→ p(y|θ)p(θ) is

integrable for every y ∈ Y, y 7→ p(y|θ) is twice differentiable on Y for every θ ∈ T, and,

for all k ∈ {1, ..., dy}, both θ 7→
∣∣∣∣∂ p(y|θ)∂y(k)

p(θ)
∣∣∣∣ and θ 7→

∣∣∣∣∂2 p(y|θ)
∂y(k)2 p(θ)

∣∣∣∣ are dominated by

integrable functions on T. Let p(y) =
∫
T p(y|θ)p(θ)dθ. The previous assumptions allow

us to partially differentiate y 7→ p(y) twice under the integral sign with respect to each

coordinate. Recall from (1.1) the definition of the H-score,

H(y, p) =
dy∑
k=1

 2 ∂
2 log p(y)
∂y2

(k)
+
(
∂ log p(y)
∂y(k)

)2
 .

For all k ∈ J1, dyK, partial differentiation under the integral sign yields, on the one hand,

∂ log p(y)
∂y(k)

= 1
p(y)

∫ (
∂ p(y|θ)
∂y(k)

)
p(θ)dθ

=
∫ (

∂ log p(y|θ)
∂y(k)

)
p(θ|y)dθ = E

[
∂ log p(y|Θ)

∂y(k)

∣∣∣∣∣ y
]
.

On the other hand, partially differentiating twice under the integral sign yields

∂2 log p(y)
∂y(k)2 = −

(
∂ log p(y)
∂y(k)

)2

+ 1
p(y)

∂2 p(y)
∂y(k)2

= −
(
∂ log p(y)
∂y(k)

)2

+ 1
p(y)

∫ (
∂2 p(y|θ)
∂y(k)2

)
p(θ)dθ.

Regarding the integrand in the last term, we have

∂2 p(y|θ)
∂y(k)2 = p(y|θ)

∂2 log p(y|θ)
∂y(k)2 +

(
∂ log p(y|θ)

∂y(k)

)2
 .

This leads to

∂2 log p(y)
∂y(k)2 = −

(
∂ log p(y)
∂y(k)

)2

+
∫
p(θ|y)

∂2 log p(y|θ)
∂y(k)2 +

(
∂ log p(y|θ)

∂y(k)

)2
 dθ

= −
(
∂ log p(y)
∂y(k)

)2

+ E

 ∂2 log p(y|Θ)
∂y(k)2 +

(
∂ log p(y|Θ)

∂y(k)

)2
∣∣∣∣∣∣ y
 .
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By putting everything together we finally get

H(y, p) =
dy∑
k=1

E
2 ∂

2 log p(y|Θ)
∂y(k)2 + 2

(
∂ log p(y|Θ)

∂y(k)

)2
∣∣∣∣∣∣ y
− (E [ ∂ log p(y|Θ)

∂y(k)

∣∣∣∣∣ y
])2

 . (B.2)

For a given model M with parameter θ ∈ T, we have

p(yt|y1:t−1) =
∫
T
p(yt|y1:t−1, θ) p(θ|y1:t−1). dθ (B.3)

Thus, under Assumption A10, applying (B.2) and (B.3) to each term of the sum in (1.3) yields

HT (M) =
T∑
t=1

dy∑
k=1

2 E

 ∂2 log p(yt|y1:t−1,Θ)
∂yt2(k)

+
∂ log p(yt|y1:t−1,Θ)

∂yt(k)

2
∣∣∣∣∣∣∣ y1:t

−
E

 ∂ log p(yt|y1:t−1,Θ)
∂yt(k)

∣∣∣∣∣∣ y1:t

2


which proves (1.4).

B.4.2 Proof of (1.11) and (1.12)

Under Assumption A11, we can partially differentiate under the integral sign, so that

for all k ∈ J1, dyK, we have

∂ log p(yt|y1:t−1, θ)
∂yt(k)

= 1
p(yt|y1:t−1, θ)

∫
p(xt|y1:t−1, θ)

∂ gθ(yt|xt)
∂yt(k)

 dxt
= 1
p(yt|y1:t−1, θ)

∫
p(xt|y1:t−1, θ) gθ(yt|xt)

∂ log gθ(yt|xt)
∂yt(k)

 dxt
=
∫ ∂ log gθ(yt|xt)

∂yt(k)

 p(xt|y1:t, θ) dxt ,

where the last equality comes from the fact that

p(xt|y1:t−1, θ) gθ(yt|xt)
p(yt|y1:t−1, θ)

= p(xt, yt|y1:t−1, θ)
p(yt|y1:t−1, θ)

= p(xt|y1:t, θ). (B.4)

This proves (1.11).

Regarding (1.12), we proceed similarly and have, for all k ∈ J1, dyK,

∂2 log p(yt|y1:t−1, θ)
∂yt2(k)

= −
∂ log p(yt|y1:t−1, θ)

∂yt(k)

2

+ 1
p(yt|y1:t−1, θ)

∂2 p(yt|y1:t−1, θ)
∂yt2(k)

. (B.5)
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The second term can be rewritten as

1
p(yt|y1:t−1, θ)

∂2 p(yt|y1:t−1, θ)
∂yt2(k)

= 1
p(yt|y1:t−1, θ)

∫
p(xt|y1:t−1, θ)

∂2 gθ(yt|xt)
∂yt2(k)

 dxt , (B.6)

where the integrand can be written as

∂2 gθ(yt|xt)
∂yt2(k)

= gθ(yt|xt)

∂2 log gθ(yt|xt)
∂yt2(k)

+
∂ log gθ(yt|xt)

∂yt(k)

2
 . (B.7)

By plugging (B.7) into (B.6) and using again (B.4), we get

1
p(yt|y1:t−1, θ)

∂2 p(yt|y1:t−1, θ)
∂yt2(k)

=
∫
p(xt|y1:t, θ)

∂2 log gθ(yt|xt)
∂yt2(k)

+
∂ log gθ(yt|xt)

∂yt(k)

2
 dxt .

By plugging this back into (B.5), we finally get

∂2 log p(yt|y1:t−1, θ)
∂yt2(k)

= −
(
∂ log p(yt|y1:t−1, θ)

∂yt(k)

)2

+
∫ ∂2 log gθ(yt|xt)

∂yt2(k)
+
(
∂ log gθ(yt|xt)

∂yt(k)

)2
 p(xt|y1:t, θ) dxt ,

which proves (1.12).

B.5 Consistency of the H-score

Without much loss of generality, we prove the results in the case of continuous univariate

observations (dy = 1). Thanks to (1.3), the proofs can be generalized to multivariate

observations by working on each dimension separately. Unless stated otherwise, we assume

that A10 and A11 hold, so that we may use (1.13) and (1.5).

Section B.5.1 should be read as a proof of concept: we prove Theorem 1 and 2 by using

intermediary results as high-level assumptions (A12 to A21). This allows us to highlight the

key steps of the proofs. In Section B.5.2, we present explicit conditions (C6 to C11) that are

sufficient for these assumptions to hold. Some of these conditions are strong, which enables

intuitive proofs; our simulation studies suggest that the consistency of the H-score is likely to

hold under weaker conditions. Detailed proofs of all the intermediary results are provided in

Section B.5.3. Proofs under weaker conditions or discrete observations are left for future work.

146



B. Supplementary material for Chapter 1

B.5.1 Proofs of Theorem 1 and 2

The first ingredient is the P?-almost sure concentration of the posterior distribution p(dθ|Y1:t)

around some limit value θ? ∈ T, as the number of observations increases (Assumption A12).

Assumption A12. P?-almost surely, there exists θ? ∈ T such that, if Θt ∼ p(dθ|Y1:t) for all

t ∈ N∗, then Θt
D−−−−→

t→+∞ θ?.

Posterior concentration in i.i.d. settings can be formally enforced by explicit regularity

conditions (e.g. Condition C6 in Section B.5.2.1). In the case of state-space models with

dependent observations, we treat posterior concentration as a working assumption. From

now on, we assume that Assumption A12 holds, so that we can unambiguously refer to the

limit point θ? around which the posterior distribution concentrates.

In addition to concentration of the posterior distribution, we also want the posterior

moments of specific test functions to converge, P?-almost surely. In particular, as the

posterior distribution concentrates to a point mass, we want the posterior expectations

and variances appearing in (1.5) to respectively converge to a finite limit and to 0, as the

number of observations increases (Assumption A13).

Assumption A13. The following limits hold:

(a) E
[
H (Yt, p(dyt|Y1:t−1,Θ))

∣∣∣ Y1:t
]
−H (Yt, p(dyt|Y1:t−1, θ

?)) P?−a.s.−−−−→
t→+∞ 0.

(b) Var
(
∂ log p(Yt|Y1:t−1,Θ)

∂yt

∣∣∣∣∣Y1:t

)
P?−a.s.−−−−→
t→+∞ 0.

By Stolz-Cesàro’s theorem, the P?-a.s. convergence of the posterior moments in Assumption

A13 implies the P?-a.s. convergence of their Cesàro means. This leads to the convergence

of the prequential quantities, so that
(

1
T

T∑
t=1

E
[
H (Yt, p(dyt|Y1:t−1,Θ))

∣∣∣ Y1:t
])
−
(

1
T

T∑
t=1
H (Yt, p(dyt|Y1:t−1, θ

?))
)

P?−a.s.−−−−→
T→+∞ 0 (B.8)
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and

1
T

T∑
t=1

Var
(
∂ log p(Yt|Y1:t−1,Θ)

∂yt

∣∣∣∣∣Y1:t

)
P?−a.s.−−−−→
T→+∞ 0 . (B.9)

At this stage, the proof starts to differ depending on which setting we consider.

B.5.1.1 Models for i.i.d. data

For i.i.d. models, we have H (Yt, p(dyt|Y1:t−1, θ
?)) = H (Yt, p(dy|θ?)) for all t ∈ N∗. If the Yt’s

are generated as i.i.d. from p? (Assumption A14), then the integrability of H (Y, p(dy|θ?))

with respect to Y ∼ p? (Assumption A15) enables the application of the law of large numbers

to the quantity T−1∑T
t=1H (Yt, p(dy|θ?)).

Assumption A14. The observations (Yt)t∈N∗ are i.i.d. draws from p?.

Assumption A15. The H-score of p(dy|θ?) is integrable: E?
[
|H (Y, p(dy|θ?))|

]
< +∞.

Under Assumptions A14 and A15, the law of large numbers reduces (B.8) to

1
T

T∑
t=1

E
[
H (Yt, p(dy|Θ))

∣∣∣ Y1:t
] P?−a.s.−−−−→

T→+∞ E?
[
H (Y, p(dy|θ?))

]
, (B.10)

where the expectation is taken with respect to Y ∼ p?. If M1 and M2 are both i.i.d. models

satisfying A10, A12, A13, and A15, then combining (1.5), (B.9) and (B.10) leads to

1
T
HT (Mj) P?−a.s.−−−−→

T→+∞ E?
[
H
(
Y, pj(dy|θ?j )

)]
,

for each j ∈ {1, 2}. Taking the difference of the respective scores yields

1
T

(
HT (M2)−HT (M1)

) P?−a.s.−−−−→
T→+∞ E?

[
H (Y, p2(dy|θ?2))

]
− E?

[
H (Y, p1(dy|θ?1))

]
, (B.11)

In order to interpret the consistency of the H-score in terms of an appropriate divergence, we

impose further regularity assumptions on the models and the data-generating process itself

(Assumption A16). Assumption A16(a) allows us to define the H-score of p?, assumed to be

integrable by A16(b). Assumption A16(c) ensures the strict propriety of the H-score.
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Assumption A16. The data-generating process and the model satisfy the following condi-

tions:

(a) y 7→ p?(y) is twice differentiable.

(b) E?
[
|H (Y, p?(dy))|

]
< +∞.

(c) ∂ log p(y|θ?)
∂y

p?(y) −−−−−→
|y|→+∞

0.

Under Assumptions A12, A15, and A16, we can define the divergence DH(p?,Mj) as in

(1.7). By adding and subtracting E? [H (Y, p?(dy))] in (B.11), we get

1
T

(
HT (M2)−HT (M1)

) P?−a.s.−−−−→
T→+∞ DH(p?,M2)−DH(p?,M1).

Under A16(c), integration by parts (Hyvärinen, 2005; Dawid and Musio, 2015) leads to

DH(p?,Mj) =
∫ (

∂ log p?(y)
∂y

−
∂ log pj(y|θ?j )

∂y

)2

p?(y)dy.

Therefore, we have DH(p?,Mj) ≥ 0.

If DH(p?,Mj) = 0, then ∂ log p?(y)/∂y = ∂ log pj(y|θ?j )/∂y for all y ∈ Y. Hence,

log p?(y) = log pj(y|θ?j ) + log(c) for all y ∈ Y and some constant c > 0. This leads to

p?(y) = c pj(y|θ?j ) for all y ∈ Y. Since probability densities integrate to 1, we necessarily have

c = 1, i.e. p?(y) = pj(y|θ?j ) for all y ∈ Y. This concludes the proof of Theorem 1.

B.5.1.2 State-space models

In the case of state-space models and dependent observations, more subtle arguments

are needed since we can no longer apply the standard law of large numbers to the term

T−1∑T
t=1H (Yt, p(dyt|Y1:t−1θ

?)) in (B.8). Instead, we approximate this term by a stationary

analog, to which ergodic theorems will apply.

To this end, we assume the process (Yt)t∈N∗ is strongly stationary and ergodic (Assumption

A17). Under strong stationarity, we can artificially extend the index set to negative integers
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and consider the two-sided process (Yt)t∈Z. We also need the dependence of the H-score on

the initial distribution of the latent Markov chain to vanish quickly enough. This will be

referred to as the forgetting property of the H-score (Assumption A18).

Assumption A17. The process (Yt)t∈N∗ is strongly stationary and ergodic.

Assumption A18. There exist ρ ∈ (0, 1) and γ > 0 such that, for all t ∈ N∗, all m ∈ N,

and all y−m:t ∈ Ym+t+1,

|H(yt, p(dyt|y−m+1:t−1, θ
?))−H(yt, p(dyt|y−m:t−1, θ

?))| ≤ γ ρt+m−1.

Under Assumptions A17 and A18, we can prove that, P?-a.s., for all t ∈ N∗, the sequence

(H(Yt, p(dyt|Y−m+1:t−1, θ
?)))m∈N is a real-valued Cauchy sequence, and thus converges to a

P?-a.s. limit denoted by H(Yt, p(dyt|Y−∞:t−1, θ
?)). In other words, P?-almost surely, and

for all t ∈ N∗, we have

H(Yt, p(dyt|Y−m+1:t−1, θ
?)) −−−−→

m→+∞ H(Yt, p(dyt|Y−∞:t−1, θ
?)) . (B.12)

Using (B.12) and the forgetting property in A18, we can prove that(
1
T

T∑
t=1
H (Yt, p(dyt|Y1:t−1, θ

?))
)
−
(

1
T

T∑
t=1
H (Yt, p(dyt|Y−∞:t−1, θ

?))
)

P?−a.s.−−−−→
T→+∞ 0 . (B.13)

The proofs of (B.12) and (B.13) are provided in Section B.5.3. Equation (B.13) implies that,

P?-almost surely, the term T−1∑T
t=1H (Yt, p(dyt|Y1:t−1θ

?)) in (B.8) can be asymptotically

approximated by the stationary quantity T−1∑T
t=1H (Yt, p(dyt|Y−∞:t−1, θ

?)), to which ergodic

theorems can be applied under adequate integrability conditions (Assumption A19).

Assumption A19. The limit in (B.12) is integrable: E?
[
|H (Y1, p(dy1|Y−∞:0, θ

?))|
]
< +∞.

Under Assumption A19, Birkhoff’s ergodic theorem after combining (B.8) and (B.13) yields

1
T

T∑
t=1

E
[
H (Yt, p(dyt|Y1:t−1,Θ))

∣∣∣ Y1:t
] P?−a.s.−−−−→

T→+∞ E?
[
H (Y1, p(dy1|Y−∞:0, θ

?))
]
. (B.14)
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Under Assumption A17, and assuming both models M1 and M2 satisfy A10, A12, A13, A18,

and A19, we can piece together (1.5), (B.9), and (B.14). This leads to

1
T

(
HT (M2)−HT (M1)

) P?−a.s.−−−−→
T→+∞ E?

[
H (Y1, p2(dy1|Y−∞:0, θ

?
2))

]
− E?

[
H (Y1, p1(dy1|Y−∞:0, θ

?
1))

]
. (B.15)

In order to interpret this consistency result in terms of a divergence, we need the quantity

H
(
Y1, pj(dy1|Y−∞:0, θ

?
j )
)

to correspond to the actual H-score at Y1 of a twice differen-

tiable probability density function y1 7→ pj(y1|Y−∞:0, θ
?
j ), conditional on Y−∞:0, P?-almost

surely (Assumption A20).

Assumption A20. P?-almost surely, we can define the conditional density p(y1|Y−∞:0, θ
?)

of Y1 given Y−∞:0, and the limit H(Y1, p(dy1|Y−∞:0, θ
?)) in (B.12) corresponds to the actual

H-score at Y1 of p(dy1|Y−∞:0, θ
?).

In order to define the divergence DH, we make further regularity assumptions on the

models and the data-generating process (Assumption A21). Similarly to Assumption A16

in the i.i.d. setting, A21(a) allows us to define the H-score of p?(dy1|Y−∞:0), conditional on

Y−∞:0, P?-almost surely, while A21(b) enforces its integrability. Assumption A21(c) ensures

the strict propriety of the H-score, conditional on Y−∞:0, P?-almost surely.

Assumption A21. The data-generating process and the model satisfy the following:

(a) The conditional density y1 7→ p?(y1|Y−∞:0) of Y1 given Y−∞:0 is well-defined and twice

differentiable on Y.

(b) E?
[
|H (Y1, p?(dy1|Y−∞:0))|

]
< +∞.

(c) ∂ log p(y1|Y−∞:0, θ
?)

∂y1
p?(y1|Y−∞:0) P?−a.s.−−−−−→

|y1|→+∞
0.
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Under Assumptions A12, A19, and A21, we can define the divergence DH(p?,Mj) as in

(1.14). By adding and subtracting E? [H (Y1, p?(dy1|Y−∞:0))] in (B.15), we get

1
T

(
HT (M2)−HT (M1)

) P?−a.s.−−−−→
T→+∞ DH(p?,M2)−DH(p?,M1).

The tower property of conditional expectations, combined with an integration by parts using

A21(c), leads to

DH(p?,Mj) = E?

∫ (
∂ log p?(y1|Y−∞:0)

∂y1
−
∂ log pj(y1|Y−∞:0, θ

?
j )

∂y1

)2

p?(y1|Y−∞:0)dy1

 .
Thus, we have DH(p?,Mj) ≥ 0. If DH(p?,Mj) = 0, the same reasoning as in the proof of

(1.6) shows that, P?-almost surely, we have pj(y1|Y−∞:0, θ
?
j ) = p?(y1|Y−∞:0) for all y1 ∈ Y.

This concludes the proof of Theorem 2.

B.5.2 Sufficient conditions and intermediary results
B.5.2.1 Assumption A12: Concentration of the posterior distribution

For a generic i.i.d. model {p(dy|θ) : θ ∈ T} with prior distribution p(dθ), if the observations

are assumed to be i.i.d. from p?, then Theorem 1.3.4. in Ghosh and Ramamoorthi (2003)

shows that the following set of regularity conditions (Condition C6) ensures the concentration

of the posterior. In other words, for i.i.d. models and data, Condition C6 and Assumption

A14 guarantee Assumption A12.

Condition C6. The model satisfies the following conditions:

(a) T is a compact metric space, and p(θ) > 0 for all θ ∈ T.

(b) y 7→ p(y|θ) is measurable for all θ ∈ T, and θ 7→ p(y|θ) is continuous for all y ∈ Y.

(c)
∫
Y supθ∈T | log p(y|θ)| p?(y)dy < +∞.
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Condition C6 can be relaxed to allow for semi-continuity and non-compact parameter

spaces, as discussed in Remark 1.3.5 of Ghosh and Ramamoorthi (2003) and its references

(e.g. Wald, 1949; Le Cam, 1953; Kiefer and Wolfowitz, 1956; Huber, 1967; Perlman, 1972).

Posterior concentration for general state-space models with dependent data is less standard,

especially when allowing for misspecification. Some concentration results have been proved

in specific cases (e.g. Lijoi et al., 2007; De Gunst and Shcherbakova, 2008; Shalizi, 2009;

Gassiat and Rousseau, 2014; Douc et al., 2019, and references therein). However, as far

as we know, a formal proof of posterior concentration with explicit conditions on possibly

misspecified state-space models has yet to be derived.

B.5.2.2 Assumption A13: Convergence of specific posterior moments

Concentration of the posterior distribution does not guarantee convergence of any posterior

moments. The latter can be ensured by further imposing equicontinuity (Condition C7)

and uniform integrability (Condition C8).

Condition C7. P?-almost surely, the following statements hold:

(a) {θ 7→ H (Yt, p(dyt|Y1:t−1, θ)) : t ∈ N∗} is equicontinuous at θ?.

(b)
{
θ 7→ ∂ log p(Yt|Y1:t−1, θ)

∂yt
: t ∈ N∗

}
is equicontinuous at θ?.

Equicontinuity at θ? of a family of functions {θ 7−→ ht(θ) : t ∈ N∗} means that all the

functions in the family share a common (i.e. not depending on t) modulus of continuity at

θ?. Equicontinuity can be enforced by the stronger but more explicit condition that there

exists a neighborhood Uθ? of θ?, on which the functions θ 7−→ ht(θ) are differentiable for

all t ∈ N∗, and such that sup(t,θ)∈N∗×Uθ? ‖∇θht(θ)‖ = L < +∞. Indeed, by the mean value

theorem, such uniform boundedness of the gradients ensures that the functions θ 7−→ ht(θ)

are L-Lipschitz on Uθ? for all t ∈ N∗, where L does not depend on t. Then, for any arbitrary

ε > 0, we can find δε > 0 not depending on t (e.g. δε = ε/L if L > 0, or else any δε > 0 if
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L = 0) such that, for all θ ∈ Uθ? , ‖θ − θ?‖ < δε implies supt∈N∗ ‖ht(θ)− ht(θ?)‖ < ε, which

proves the equicontinuity at θ? of the family {θ 7−→ ht(θ) : t ∈ N∗}.

Condition C8. P?-almost surely, if Θt ∼ p(dθ|Y1:t) for all t ∈ N∗, then the following

statements hold:

(a) {H (Yt, p(dyt|Y1:t−1,Θt)) : t ∈ N∗} is uniformly integrable given (Yt)t∈N∗.

(b)


(
∂ log p(Yt|Y1:t−1,Θt)

∂yt

)2

: t ∈ N∗
 is uniformly integrable given (Yt)t∈N∗.

Uniform integrability of a family of random variables {Ht : t ∈ N∗} can be enforced

by the stronger but more explicit condition of Lα-boundedness: if there exists α > 1 such

that supt∈N∗ E [ |Ht|α ] < +∞, then {Ht : t ∈ N∗} is uniformly integrable (e.g. see Theorem

25.12 and its corollary in Billingsley, 1995).

Convergence of the relevant posterior moments in Assumption A13 can be obtained

as a consequence of Assumption A12 combined with Conditions C7 and C8. This is

summarized by the following lemma.

Lemma 22. Assume A12, C7, and C8. Then Assumption A13 holds and we have:

(a) E
[
H (Yt, p(dyt|Y1:t−1,Θ))

∣∣∣ Y1:t
]
−H (Yt, p(dyt|Y1:t−1, θ

?)) P?−a.s.−−−−→
t→+∞ 0.

(b) Var
(
∂ log p(Yt|Y1:t−1,Θ)

∂yt

∣∣∣∣∣Y1:t

)
P?−a.s.−−−−→
t→+∞ 0.

The proof of Lemma 22 is provided in Section B.5.3.3.

B.5.2.3 Assumption A18: Forgetting property of the H-score

For state-space models, the forgetting property of the H-score can be obtained as a consequence

of the forgetting property of the latent Markov chain stated in (B.16) (following from

Condition C9) and some appropriate boundedness conditions on the first two derivatives

of the observation log-density (Condition C10). Condition C9 corresponds to a simplified

version of Assumption A13.1 in Douc et al. (2014).
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Condition C9. The model satisfies the following conditions:

(a) There exists a dominating probability measure η on X such that the transition kernel

fθ?(dxt+1|xt) has density νθ?(xt+1|xt) = (dfθ?(·|xt)/dη)(xt+1) with respect to η.

(b) There exist positive constants σ− and σ+ such that, for all (xt, xt+1) ∈ X × X, the

transition density νθ?(xt+1|xt) satisfies 0 < σ− < νθ?(xt+1|xt) < σ+ < +∞.

(c) For all yt ∈ Y, the integral
∫
X gθ?(yt, xt) η(dxt) is bounded away from 0 and +∞.

Under strong stationarity of the process (Yt)t∈N∗ , Lemma 13.2 in Douc et al. (2014)

guarantees that for all t ∈ N∗, all m ∈ N, and all realizations y−m:t ∈ Ym+t+1, the filtering

distributions of the latent states satisfy

dTV
(
p(dxt|y−m+1:t, θ

?), p(dxt|y−m:t, θ
?)
)
≤ ρt+m−1, (B.16)

where dTV stands for the total variation distance and ρ = 1− (σ−/σ+) ∈ (0, 1). Condition

C9 would typically require the latent space X to be finite or compact, and ensures that the

transition kernel is geometrically ergodic. Such a condition can generally be weakened to

allow for non-finite and non-compact spaces (e.g. Douc et al., 2011; Douc and Moulines, 2012).

When (1.11) and (1.12) hold, H-scores for a fixed θ? can be written in terms of expectations

with respect to the corresponding filtering distributions. Differences of H-scores can then be

related to total variation distance between filtering distributions by assuming the integrands

in (1.11) and (1.12) are bounded (Condition C10).

Condition C10. The model satisfy the following domination conditions:

(a) b = sup
x∈X
y∈Y

∣∣∣∣∣∂2 log gθ? (y|x)
∂y2 +

(
∂ log gθ? (y|x)

∂y

)2
∣∣∣∣∣ < +∞.

(b) c = sup
x∈X
y∈Y

∣∣∣∣∂ log gθ? (y|x)
∂y

∣∣∣∣ < +∞.
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Condition C10 could be enforced by the stronger conditions that X and Y are compact, and

the first two derivatives of y 7→ log gθ?(y|x) are continuous with respect to (x, y). Compactness

conditions may look quite restrictive, since most well-known continuous distributions have

non compact supports. In reality, for all practical purposes, we could always envision a

sufficiently large compact space in which all our numerical values would lie. As stated earlier,

Conditions C9 and C10 should only be regarded as mere sufficient conditions that allow

for more straightforward proofs. The models of our simulation studies do not satisfy these

conditions, and yet we observe the consistency of H-scores. This indicates that consistency

is likely to hold under weaker conditions.

Under Assumptions A11, A12, and A17, Conditions C9 and C10 combined with (1.11)-

(1.12) guarantee that the forgetting property of the H-score in Assumption A18 holds,

as stated by the following lemma.

Lemma 23. Assume A11, A12, A17, C9, and C10. Then, for all t ∈ N∗, all m ∈ N, and all

y−m:t ∈ Ym+t+1,

|H(yt, p(dyt|y−m+1:t−1, θ
?))−H(yt, p(dyt|y−m:t−1, θ

?))| ≤ 2(b + c2) ρt+m−1, (B.17)

sup
m∈N
|H(yt, p(dyt|y−m+1:t−1, θ

?))| ≤ 2 b + c2, (B.18)

where ρ = 1− σ−

σ+ ∈ (0, 1).

Equation (B.17) in Lemma 23 enforces Assumption A18 with γ = 2(b+c2), while (B.18) di-

rectly buys us Assumptions A15 and A19. The proof of Lemma 23 is provided in Section B.5.3.

B.5.2.4 Assumption A20: H-score of conditional density given the infinite past

Ensuring that we may define y1 7→ p(y1|Y−∞:0, θ
?) as an actual probability density function

can be done under further domination and integrability conditions on the observation

density (Condition C11).
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Condition C11. Let νθ? be the probability measure from Condition C9. Then we have:

(a) sup
x∈X
y∈Y

gθ?(y|x) < +∞.

(b) E? [|log (
∫
X gθ?(Y1|x)νθ?(dx))|] < +∞.

Condition C11 corresponds to a simplified statement of Assumption A13.3 in Douc et al.

(2014). Under Assumption A17 with Conditions C9 and C11, Lemma 13.12 and Proposition

13.5 from Douc et al. (2014) show that y1 7→ log p(y1|Y−∞:0, θ
?) = limm→+∞ log p(y1|Y−m+1:0, θ

?)

exists and defines an actual log-density, P?-almost surely. The P?-almost sure twice differ-

entiability of y1 7→ log p(y1|Y−∞:0, θ
?) follows from the uniform convergence of the first two

derivatives of y1 7→ log p(y1|Y−m+1:0, θ
?) as m→ +∞ (e.g. Theorem 7.17 from Rudin, 1964),

which can be proved using (1.11)-(1.12) and the domination conditions from C10. In other

words, under Assumptions A11 and A17, Conditions C9 to C11 ensure that Assumption

A20 holds. This is stated by the following lemma.

Lemma 24. Assume A11, A17, C9, C10, and C11. Then, P?-almost surely, there exists a

continuous probability density function x1 7→ p(x1|Y−∞:0, θ
?) = lim

m→+∞
p(x1|Y−m+1:0, θ

?) with

respect to νθ?. Define the function

y1 7→ p(y1|Y−∞:0, θ
?) =

∫
gθ?(y1|x1)p(x1|Y−∞:0, θ

?)νθ?(dx1).

Then, P?-almost surely, p(Y1|Y−∞:0, θ
?) = p(y1|Y−∞:0, θ

?)|y1=Y1, and y1 7→ p(y1|Y−∞:0, θ
?) is

the conditional density with respect to the Lebesgue measure of Y1 given the σ-algebra generated

by (Y−m)m∈N under P?. Moreover, P?-almost surely, the limit function

y1 7→ log p(y1|Y−∞:0, θ
?) = lim

m→+∞
log p(y1|Y−m+1:0, θ

?)

exists and is twice differentiable on Y, with

∂ log p(y1|Y−∞:0, θ
?)

∂y1
= lim

m→+∞

∂ log p(y1|Y−m+1:0, θ
?)

∂y1
,
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∂2 log p(y1|Y−∞:0, θ
?)

∂y2
1

= lim
m→+∞

∂2 log p(y1|Y−m+1:0, θ
?)

∂y2
1

,

and

H(y1, p(dy1|Y−∞:0, θ
?)) = 2 ∂

2 log p(y1|Y−∞:0, θ
?)

∂y2
1

+
(
∂2 log p(y1|Y−∞:0, θ

?)
∂y2

1

)2

for all y1 ∈ Y.

The proof of Lemma 24 is provided in Section B.5.3.

B.5.3 Proofs of intermediary results
B.5.3.1 Proof of (B.12)

Fix some arbitrary ε > 0 and t ∈ N∗. Since ρ ∈ (0, 1), we have ρN → 0 as N → +∞, so

there exists some N ∈ N large enough such that γ ρt+N(1− ρ)−1 < ε. Using Assumption

A18, we get, P?-almost surely, for any n > m > N ,

|H(Yt, p(dyt|Y−m+1:t−1, θ
?))−H(Yt, p(dyt|Y−n+1:t−1, θ

?))|

≤
n−1∑
k=m
|H(Yt, p(dyt|Y−k+1:t−1, θ

?))−H(Yt, p(dyt|Y−k:t−1, θ
?))|

≤ γ ρt−1
n−1∑
k=m

ρk

≤ γ ρt−1
+∞∑

k=N+1
ρk

≤ ε.

Therefore (H(Yt, p(dyt|Y−m+1:t−1, θ
?))m∈N is a Cauchy sequence for every t ∈ N∗, P?-almost

surely. Since R is complete, this sequence converges P?-almost surely to a limit, denoted by

H(Yt, p(dyt|Y−m+1:t−1, θ
?)) P?−a.s.−−−−→

m→+∞ H(Yt, p(dyt|Y−∞:t−1, θ
?)).
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B.5.3.2 Proof of (B.13)

We have, P?-almost surely, for every T ∈ N∗,∣∣∣∣∣ 1T
T∑
t=1

(
H (Yt, p(dyt|Y1:t−1, θ

?))−H (Yt, p(dyt|Y−∞:t−1, θ
?))
)∣∣∣∣∣

≤ 1
T

T∑
t=1

+∞∑
m=0

∣∣∣H (Yt, p(dyt|Y−m+1:t−1, θ
?))−H (Yt, p(dyt|Y−m:t−1, θ

?))
∣∣∣

≤ γ

T

T∑
t=1

+∞∑
m=0

ρt+m−1,

where ρ ∈ (0, 1) and γ > 0 are given by Assumption A18. Properties of geometric series lead to∣∣∣∣∣
(

1
T

T∑
t=1
H (Yt, p(dyt|Y1:t−1, θ

?))
)
−
(

1
T

T∑
t=1
H (Yt, p(dyt|Y−∞:t−1, θ

?))
)∣∣∣∣∣

≤ γ

T

+∞∑
t=1

ρt−1
+∞∑
m=0

ρm

≤ γ

T (1− ρ)2 .

The upper bound goes to 0 as T → +∞, therefore(
1
T

T∑
t=1
H (Yt, p(dyt|Y1:t−1, θ

?))
)
−
(

1
T

T∑
t=1
H (Yt, p(dyt|Y−∞:t−1, θ

?))
)

P?−a.s.−−−−→
T→+∞ 0.

B.5.3.3 Proof of Lemma 22

Any finite intersection of almost sure events is an almost sure event, thus we can find a

common event A such that P?(A) = 1, and on which all the assumptions and conditions

hold simultaneously. Fix some arbitrary ω ∈ A. For all t ∈ N∗, define yt = Yt(ω) and let

Θt ∼ p(dθ|y1:t). By Assumption A12, we have Θt
D−−−−→

t→+∞ θ?. The space T is a metric space

and the support of the limit distribution δθ∗ is the singleton {θ∗}, which is separable, so

by Skorokhod’s representation theorem (e.g. see Theorem 6.7 in Billingsley, 1968), we can

construct random variables (Θ′t)t∈N∗ on some instrumental probability space (Ω,F ,P) such
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that Θ′t ∼ Θt for all t ∈ N∗ and Θ′t
P−a.s.−−−−→
t→+∞ θ?, where P captures the randomness of (Θ′t)t∈N∗

conditional on the realizations (yt)t∈N∗ . We have, P-almost surely, for any arbitrary ε > 0

and the corresponding δε > 0 given by the equicontinuity stated in Condition C7(a), the

existence of some t0 ∈ N∗ such that, for every t > t0, we have d(Θ′t, θ?) < δε and

|H(yt, p(dyt|y1:t−1,Θ′t))−H(yt, p(dyt|y1:t−1, θ
?))| ≤ ε.

Therefore, we have

H (yt, p(dyt|y1:t−1,Θ′t))−H (yt, p(dyt|y1:t−1, θ
?)) P−a.s.−−−−→

t→+∞ 0. (B.19)

Similarly, using C7(b), we get

∂ log p(yt|y1:t−1,Θ′t)
∂yt

− ∂ log p(yt|y1:t−1, θ
?)

∂yt

P−a.s.−−−−→
t→+∞ 0. (B.20)

The family {H (yt, p(dyt|y1:t−1,Θ′t))−H (yt, p(dyt|y1:t−1, θ
?))}t∈N∗ is uniformly integrable by

Condition C8(a) and the fact that Θ′t ∼ Θt ∼ p(dθ|y1:t) for all t ∈ N∗, so that the convergence

from (B.19) implies the convergence of the first moments (e.g. see Theorem 25.12 in

Billingsley, 1995). In other words, we get

E [H (yt, p(dyt|y1:t−1,Θ′t)) | y1:t]−H (yt, p(dyt|y1:t−1, θ
?)) −−−−→

t→+∞ 0.

By construction, we have Θ′t ∼ Θt, thus

E [H (yt, p(dyt|y1:t−1,Θt)) | y1:t]−H (yt, p(dyt|y1:t−1, θ
?)) −−−−→

t→+∞ 0.

Since this holds for all ω ∈ A and P?(A) = 1, we conclude that

E [H (Yt, p(dyt|Y1:t−1,Θ)) | Y1:t]−H (Yt, p(dyt|Y1:t−1, θ
?)) P?−a.s.−−−−→

t→+∞ 0 ,

where the expectation is taken with respect to the posterior distribution of Θ given Y1:t, which

proves A13(a).
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Similarly, the family
{(
∂ log p(yt|y1:t−1,Θ′t)/∂yt − ∂ log p(yt|y1:t−1, θ

?)/∂yt
)2
}
t∈N∗

is uni-

formly integrable by Condition C8(b) and the fact that Θ′t ∼ Θt ∼ p(dθ|y1:t) for all t ∈ N∗,

so that the convergence from (B.20) implies the convergence of the first two moments, and

a fortiori the convergence of the variance. Thus,

Var
(
∂ log p(yt|y1:t−1,Θ′t)

∂yt
− ∂ log p(yt|y1:t−1, θ

?)
∂yt

∣∣∣∣∣ y1:t

)
−−−−→
t→+∞ 0.

By construction, we have Θ′t ∼ Θt. Besides, ∂ log p(yt|y1:t−1, θ
?)/∂yt is constant given y1:t.

Therefore,

Var
(
∂ log p(yt|y1:t−1,Θt)

∂yt

∣∣∣∣∣ y1:t

)
−−−−→
t→+∞ 0.

Since this holds for all ω ∈ A and P?(A) = 1, we conclude that

Var
(
∂ log p(Yt|Y1:t−1,Θ)

∂yt

∣∣∣∣∣ Y1:t

)
P?−a.s.−−−−→
t→+∞ 0 ,

where the variance is taken with respect to the posterior distribution of Θ given Y1:t, which

proves A13(b).

B.5.3.4 Proof of Lemma 23

By (1.11)-(1.12) under Assumption A11, the H-score satisfies

H(yt, p(dyt|y−m+1:t−1, θ
?)) = 2

∫ ∂2 log gθ?(yt|xt)
∂y2

t

+
(
∂ log gθ?(yt|xt)

∂yt

)2
 p(dxt|y−m+1:t, θ

?)

+
(∫ ∂ log gθ?(yt|xt)

∂yt
p(dxt|y−m+1:t, θ

?)
)2

. (B.21)

Under Condition C10, the triangular inequality and the fact that probability densities integrate

to 1 lead to

|H(yt, p(dyt|y−m+1:t−1, θ
?))−H(yt, p(dyt|y−m:t−1, θ

?))|

≤ 2

∣∣∣∣∣∣
∫ ∂2 log gθ?(yt|xt)

∂y2
t

+
(
∂ log gθ?(yt|xt)

∂yt

)2
 (p(dxt|y−m+1:t, θ

?)− p(dxt|y−m:t, θ
?))

∣∣∣∣∣∣
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+

∣∣∣∣∣∣
(∫ ∂ log gθ?(yt|xt)

∂yt
p(dxt|y−m+1:t, θ

?)
)2

−
(∫ ∂ log gθ?(yt|xt)

∂yt
p(dxt|y−m+1:t, θ

?)
)2
∣∣∣∣∣∣

≤ 2 b
∣∣∣∣∫ (p(dxt|y−m+1:t, θ

?)− p(dxt|y−m:t, θ
?))
∣∣∣∣

+ c2
∣∣∣∣∫ (

p(dxt|y−m+1:t, θ
?)− p(dxt|y−m:t, θ

?)
)∣∣∣∣ ∣∣∣∣∫ (

p(dxt|y−m+1:t, θ
?) + p(dxt|y−m:t, θ

?)
)∣∣∣∣

≤ 2 b dTV
(
p(dxt|y−m+1:t, θ

?), p(dxt|y−m:t, θ
?)
)

+ 2 c2 dTV
(
p(dxt|y−m+1:t, θ

?), p(dxt|y−m:t, θ
?)
)

≤ 2
(
b + c2

)
dTV

(
p(dxt|y−m+1:t, θ

?), p(dxt|y−m:t, θ
?)
)

≤ 2
(
b + c2

)
ρt+m−1 (B.22)

where the last inequality comes from (B.16) under Condition C9. This proves (B.17). From

(B.21) and Condition C10, the triangular inequality and the fact that probability densities

integrate to 1 yield (B.18).

B.5.3.5 Proof of Lemma 24

We closely follow the proof of Lemma 13.12 in Douc et al. (2014). We have

p(x1|Y−m+1:0, θ
?) =

∫
νθ?(x1|x0) p(dx0|Y−m+1:0, θ

?), (B.23)

for all x1 ∈ X and all m ∈ N∗, P?-almost surely. By Condition C9 and (B.16), we get

|p(x1|Y−m+1:0, θ
?)− p(x1|Y−m:0, θ

?)| ≤ σ+ dTV
(
p(dx0|Y−m+1:0, θ

?), p(dx0|Y−m:0, θ
?)
)

≤ σ+ρm−1

for all x1 ∈ X and allm ∈ N∗, P?-almost surely. The upper bound does not depend on x1, hence

sup
x1∈X
|p(x1|Y−m+1:0, θ

?)− p(x1|Y−m:0, θ
?)| ≤ σ+ρm−1,

for all m ∈ N∗, P?-almost surely. The geometric series ∑m ρ
m converges, since ρ ∈ (0, 1), thus

+∞∑
m=1

sup
x1∈X
|p(x1|Y−m+1:0, θ

?)− p(x1|Y−m:0, θ
?)| < +∞,
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P?-almost surely. In other words, we have

P?
(+∞∑
m=1

sup
x1∈X
|p(x1|Y−m+1:0, θ

?)− p(x1|Y−m:0, θ
?)| < +∞

)
= 1. (B.24)

For any ε > 0, the convergence of the series in (B.24) guarantees that, P?-almost surely,

there exists some N ∈ N∗, such that ∑+∞
m=N supx1∈X |p(x1|Y−m+1:0, θ

?)− p(x1|Y−m:0, θ
?)| < ε.

Then, for all r > s > N ,

sup
x1∈X
|p(x1|Y−s:0, θ?)− p(x1|Y−r:0, θ?)| = sup

x1∈X

∣∣∣∣∣
r∑

m=s+1
p(x1|Y−m+1:0, θ

?)− p(x1|Y−m:0, θ
?)
∣∣∣∣∣

≤
r∑

m=s+1
sup
x1∈X
|p(x1|Y−m+1:0, θ

?)− p(x1|Y−m:0, θ
?)|

≤
+∞∑
m=N

sup
x1∈X
|p(x1|Y−m+1:0, θ

?)− p(x1|Y−m:0, θ
?)|

≤ ε.

This implies that, P?-almost surely, the sequence of non-negative continuous functions

(x1 7→ p(x1|Y−m:0, θ
?))m∈N converges uniformly to a limit function x1 7→ p(x1|Y−∞:0, θ

?) =

limm→+∞ p(x1|Y−m:0, θ
?), which is itself necessarily non-negative and continuous, as a uni-

form limit of such functions. We can now check that x1 7→ p(x1|Y−∞:0, θ
?) is indeed a

probability density function.

On the one hand, applying Fatou’s Lemma to the collection of non-negative functions

(x1 7→ p(x1|Y−m:0, θ
?))m∈N yields

∫
p(x1|Y−∞:0, θ

?)η(dx1) =
∫

lim inf
m→+∞

p(x1|Y−m:0, θ
?)η(dx1) ≤ lim inf

m→+∞

∫
p(x1|Y−m:0, θ

?)η(dx1) = 1,

where η is the dominating measure introduced in Condition C9(a).

On the other hand, (B.23) and Condition C9 imply 0 ≤ p(x1|Y−m:0, θ
?) ≤ σ+. Applying

Fatou’s Lemma to the non-negative functions (x1 7→ σ+ − p(x1|Y−m:0, θ
?))m∈N yields

1 = lim sup
m→+∞

∫
p(x1|Y−m:0, θ

?)η(dx1) ≤
∫

lim sup
m→+∞

p(x1|Y−m:0, θ
?)η(dx1) =

∫
p(x1|Y−∞:0, θ

?)η(dx1).
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These two inequalities hold P?-almost surely, and prove that, P?-almost surely, the function

x1 7→ p(x1|Y−∞:0, θ
?) is a probability density with respect to η.

Furthermore, for all y1 ∈ Y, all x1 ∈ X, and all m ∈ N∗, we have, P?-almost surely,

p(y1|Y−m+1:0, θ
?) =

∫
gθ?(y1|x1)νθ?(x1|x0) p(dx0|Y−m+1:0, θ

?)dx1.

By using again (B.16), we get

|p(y1|Y−m+1:0, θ
?)− p(y1|Y−m:0, θ

?)|

≤ σ+ sup
x∈X
y∈Y

gθ?(y|x) dTV
(
p(dx0|Y−m+1:0, θ

?), p(dx0|Y−m:0, θ
?)
)

≤ σ+ sup
x∈X
y∈Y

gθ?(y|x) ρm−1

for all y1 ∈ Y and all m ∈ N∗, P?-almost surely. The supremum is finite thanks to Condition

C11. Using a similar reasoning as in the first part of the proof, we get

P?
(+∞∑
m=1

sup
y1∈Y
|p(y1|Y−m+1:0, θ

?)− p(y1|Y−m:0, θ
?)| < +∞

)
= 1, (B.25)

so that, P?-almost surely, the sequence of functions (y1 7→ p(y1|Y−m:0, θ
?))m∈N converges

uniformly to a limit function y1 7→ p(y1|Y−∞:0, θ
?), and p(Y1|Y−∞:0, θ

?) = p(y1|Y−∞:0, θ
?)|y1=Y1 .

Consider an event K ⊆ Y such that λ(K) < +∞, where λ denotes the Lebesgue measure.

On the one hand, martingale convergence theorems (e.g. Corollary B.13 in Douc et al.,

2014) guarantee that, P?-almost surely,

E [1K(Y1)|Y−∞:0, θ
?] = lim

m→+∞
E [1K(Y1)|Y−m:0, θ

?] . (B.26)

On the other hand, the uniform convergence of the functions (y1 7→ p(y1|Y−m:0, θ
?))m∈N and

the finiteness of λ(K) allow us to interchange the order of limits and integration. This

implies that, P?-almost surely, we have

lim
m→+∞

E [1K(Y1)|Y−m:0, θ
?] = lim

m→+∞

∫
1K(y1)p(y1|Y−m:0, θ

?)λ(dy1)
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=
∫
1K(y1) lim

m→+∞
p(y1|Y−m:0, θ

?)λ(dy1)

=
∫
1K(y1)p(y1|Y−∞:0, θ

?)λ(dy1). (B.27)

Combining (B.26) and (B.27) leads to

E [1K(Y1)|Y−∞:0, θ
?] =

∫
1K(y1)p(y1|Y−∞:0, θ

?)λ(dy1),

for any event K ⊆ Y with λ(K) < +∞, P?-almost surely. This proves that, P?-almost

surely, y1 7→ p(y1|Y−∞:0, θ
?) is the conditional density of Y1 given Y−∞:0. Finally, we get

log p(y1|Y−∞:0, θ
?) = lim

m→+∞
log p(y1|Y−m+1:0, θ

?) for all y1 ∈ Y, P?-almost surely, by applying

Proposition 13.5 from Douc et al. (2014).
Under Assumption A11, the function y1 7→ log p(y1|Y−m+1:0, θ

?) is P?-almost surely twice
differentiable for all m ∈ N. P?-almost surely, for all y1 ∈ Y, the first derivative is

∂ log p(y1|Y−m+1:0, θ
?)

∂y1
=
∫ (

∂ log gθ?(y1|x1)
∂y1

)
p(x1|Y−m+1:0, θ

?) dx1 ,

and the second derivative satisfies

∂2 log p(y1|Y−m+1:0, θ
?)

∂y2
1

= −
(
∂ log p(y1|Y−m+1:0, θ

?)
∂y1

)2

+
∫ ∂2 log gθ?(y1|x1)

∂y2
1

+
(
∂ log gθ?(y1|x1)

∂y1

)2
 p(x1|Y−m+1:0, θ

?) dx1.

We will prove the P?-almost sure twice differentiability of y1 7→ log p(y1|Y−∞:0, θ
?) by

proving that the sequences of derivatives (y1 7→ ∂ log p(y1|Y−m+1:0, θ
?)/∂y1)m∈N and (y1 7→

∂2 log p(y1|Y−m+1:0, θ
?)/∂y2

1)m∈N converge uniformly to well-defined limit functions, P?-almost

surely. Such uniform convergences imply the twice differentiability of the limit of (y1 7→

log p(y1|Y−m+1:0, θ
?))m∈N by virtue of Theorem 7.17 from Rudin (1964).

From Condition C10 and (B.16), we have, P?-almost surely, for all m ∈ N and all y1 ∈ Y,∣∣∣∣∣∂ log p(y1|Y−m+1:0, θ
?)

∂y1
− ∂ log p(y1|Y−m:0, θ

?)
∂y1

∣∣∣∣∣ ≤ c dTV
(
p(dx1|Y−m+1:0, θ

?), p(dx1|Y−m:0, θ
?)
)

≤ c ρm.

As the upper bound does not depend on y1 ∈ Y, we have, P?-almost surely, for all m ∈ N,

sup
y1∈Y

∣∣∣∣∂ log p(y1|Y−m+1:0, θ
?)

∂y1
− ∂ log p(y1|Y−m:0, θ

?)
∂y1

∣∣∣∣ ≤ c ρm,
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where ρ ∈ (0, 1). By using the triangle inequality, we have, P?-almost surely,

sup
y1∈Y

∣∣∣∣∣
+∞∑
k=m

(
∂ log p(y1|Y−k+1:0, θ

?)
∂y1

− ∂ log p(y1|Y−k:0, θ
?)

∂y1

)∣∣∣∣∣
≤

+∞∑
k=m

sup
y1∈Y

∣∣∣∣∂ log p(y1|Y−k+1:0, θ
?)

∂y1
− ∂ log p(y1|Y−k:0, θ

?)
∂y1

∣∣∣∣
≤ c

+∞∑
k=m

ρk

≤ c
ρm

1− ρ.

Using telescopic sums, and ρm → 0 when m → +∞ since ρ ∈ (0, 1), we get

sup
y1∈Y

∣∣∣∣∣∂ log p(y1|Y−m+1:0, θ
?)

∂y1
− ∂ log p(y1|Y−∞:0, θ

?)
∂y1

∣∣∣∣∣ P?−a.s.−−−−→
m→+∞ 0 ,

where

∂ log p(y1|Y−∞:0, θ
?)

∂y1
= lim

m→+∞
P?-a.s.

∂ log p(y1|Y−m+1:0, θ
?)

∂y1
.

In other words, P?-a.s., the sequence of derivatives (y1 7→ ∂ log p(y1|Y−m+1:0, θ
?)/∂y1)m∈N

converges uniformly to the function y1 7→ ∂ log p(y1|Y−∞:0, θ
?)/∂y1. Besides, we have proved

earlier that the sequence of functions (y1 7→ log p(y1|Y−m+1:0, θ
?))m∈N converges pointwise to

the limit function y1 7→ log p(y1|Y−∞:0, θ
?). By using Theorem 7.17 from Rudin (1964), the

limit function y1 7→ log p(y1|Y−∞:0, θ
?) is P?-almost surely differentiable and its derivative

is given P?-almost surely by

∂ log p(y1|Y−∞:0, θ
?)

∂y1
= lim

m→+∞

∂ log p(y1|Y−m+1:0, θ
?)

∂y1
.

Regarding the second derivative, we can follow the approach used to derive (B.22) in the

proof of Lemma 23, so that, P?-almost surely, for all m ∈ N and all y1 ∈ Y, we have∣∣∣∣∣∣
(
∂ log p(y1|Y−m+1:0, θ

?)
∂y1

)2

−
(
∂ log p(y1|Y−m:0, θ

?)
∂y1

)2
∣∣∣∣∣∣ ≤ 2 c2 ρm,
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By using again the triangle inequality, telescopic sums, and the fact that ρ ∈ (0, 1) so

that ρm → 0 when m → +∞, we get

sup
y1∈Y

∣∣∣∣∣∣
+∞∑
k=m

(∂ log p(y1|Y−k+1:0, θ
?)

∂y1

)2

−
(
∂ log p(y1|Y−k:0, θ

?)
∂y1

)2
∣∣∣∣∣∣ P?−a.s.−−−−→

m→+∞ 0 ,

which implies that, P?-a.s., the sequence of functions ( y1 7→ (∂ log p(y1|Y−k+1:0, θ
?)/∂y1)2 )m∈N

converges uniformly to some limit function

y1 7→ lim
m→+∞

(
∂ log p(y1|Y−m+1:0, θ

?)
∂y1

)2

. (B.28)

By following again the derivation of (B.22) in the proof of Lemma 23, we get, P?-a.s.,

for all m ∈ N and all y1 ∈ Y,∣∣∣∣∣∣
∫ ∂2 log gθ?(y1|x1)

∂y2
1

+
(
∂ log gθ?(y1|x1)

∂y1

)2
(p(dx1|Y−m+1:0, θ

?)− p(dx1|Y−m:0, θ
?)
)∣∣∣∣∣∣ ≤ b ρm.

As previously, the triangle inequality, telescopic sums, and ρ ∈ (0, 1) imply that, P?-

almost surely, the sequencey1 7→
∫ ∂2 log gθ?(y1|x1)

∂y2
1

+
(
∂ log gθ?(y1|x1)

∂y1

)2
 p(dx1|Y−m+1:0, θ

?)

m∈N

converges uniformly to some limit function

y1 7→ lim
m→+∞

∫ ∂2 log gθ?(y1|x1)
∂y2

1
+
(
∂ log gθ?(y1|x1)

∂y1

)2
 p(dx1|Y−m+1:0, θ

?). (B.29)

Since a sum of two uniformly convergent sequences of functions is still uniformly convergent,

with the limit function being the sum of the two limit functions, the previous results imply

that the sequence of second derivatives (y1 7→ ∂2 log p(y1|Y−m+1:0, θ
?)/∂y2

1)m∈N converges

uniformly to the function y1 7→ ∂2 log p(y1|Y−∞:0, θ
?)/∂y2

1 defined as the sum of the limit

functions in (B.28) and (B.29), P?-almost surely. By using again Theorem 7.17 from Rudin

(1964), the function y1 7→ log p(y1|Y−∞:0, θ
?) is twice differentiable with second derivative

equal to y1 7→ ∂2 log p(y1|Y−∞:0, θ
?)/∂y2

1, P?-almost surely.
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By (B.12) and the previous results, we get, P?-almost surely, for all y1 ∈ Y,

H(y1, p(dy1|Y−∞:0, θ
?))

= lim
m→+∞

H(y1, p(dy1|Y−m+1:0, θ
?))

= lim
m→+∞

2 ∂
2 log p(y1|Y−m+1:0, θ

?)
∂y2

1
+
(
∂ log p(y1|Y−m+1:0, θ

?)
∂y1

)2


= 2 lim
m→+∞

(
∂2 log p(y1|Y−m+1:0, θ

?)
∂y2

1

)
+
(

lim
m→+∞

∂ log p(y1|Y−m+1:0, θ
?)

∂y1

)2

= 2 ∂
2 log p(y1|Y−∞:0, θ

?)
∂y2

1
+
(
∂ log p(y1|Y−∞:0, θ

?)
∂y1

)2

.

B.5.4 Heuristic proof for well-specified nested i.i.d. models

In this section, we go back to the i.i.d. setting of Section B.5.1.1, but we now assume that

model M1 is nested in model M2, in the sense of Eq. (9) in Berger and Pericchi (1996). In

other words, with k1, k2 ∈ N denoting the dimensions of the parameter spaces T1 and T2

with k2 > k1 > 0, we have T2 = {(θ1, η) ∈ Ξ1 × Ξ2} ⊆ Rk1 × Rk2−k1 and T1 ⊆ Ξ1, and there

exists η?1 ∈ Ξ2 such that for all y ∈ Y and all θ1 ∈ T1, we have p1(y|θ1) = p2(y|θ1, η
?
1). We

also assume that both M1 and M2 are well-specified, so that there exists θ?1 ∈ T1 such that,

for all y ∈ Y, we have p?(y) = p1(y|θ?1) = p2(y|θ?2), where θ?2 = (θ?1, η?1). For simplicity, we

assume θ?1 is in the interior of T1. In this setting, the H-score is said to be consistent if it

asymptotically chooses the model of smaller dimension, i.e. M1. It is enough to show that

HT (M2)−HT (M1)→ +∞ as T → +∞, in P?-probability. The rest of this section is meant as

a mere proof of concept with some heuristic arguments for this consistency to hold. We define

ΛT (M2,M1) =
T∑
t=1

E
[
H (Yt, p2(dy|Θ2))

∣∣∣ Y1:t
]
−

T∑
t=1

E
[
H (Yt, p1(dy|Θ1))

∣∣∣ Y1:t
]
,

∆T (M2,M1) =
T∑
t=1

Var
(
∂ log p2(Yt|Θ2)

∂yt

∣∣∣∣∣Y1:t

)
−

T∑
t=1

Var
(
∂ log p1(Yt|Θ1)

∂yt

∣∣∣∣∣Y1:t

)
,
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so that we can write, using (1.5),

HT (M2)−HT (M1) = ΛT (M2,M1) + ∆T (M2,M1). (B.30)

In the non-nested misspecified setting, the first term ΛT (M2,M1) would typically dominate

and drive the difference HT (M2) − HT (M1), which would then behave asymptotically

as T (DH(p?,M2)−DH(p?,M1)). However, in the nested well-specified setting, we have

DH(p?,M2) − DH(p?,M1) = 0, so that we would expect the second term ∆T (M2,M1) to

take over, and act as a penalty reflecting the difference in dimensions. This penalty term

will dictate the asymptotic behavior of HT (M2) − HT (M1), provided that the first term

ΛT (M2,M1) does not grow too fast (Assumption A22).

This can be informally motivated by the following arguments. Under appropriate

regularity conditions, for each j ∈ {1, 2}, the posterior of Θj given Y1:T under model

Mj concentrates in P?-probability around the maximum likelihood estimator (MLE) de-

fined as θ̂MLE
j,T = arg minθ∈Tj −

∑T
t=1 log pj(Yt|θ) (e.g. see Theorem 1.3.4 in Ghosh and

Ramamoorthi, 2003). Under conditions ensuring the consistency of M-estimators (e.g.

see Theorem 5.7 in Van der Vaart, 2000), the minimum H-score estimator (mHE) defined

as θ̂mHE
j,T = arg minθ∈Tj

∑T
t=1H (Yt, pj(dy|θ)) gets asymptotically close to the MLE, in the

sense that limT→+∞(θ̂MLE
j,T − θ̂mHE

j,T ) = (θ?j − θ?j ) = 0 in P?-probability, where the limits of

the MLE and the mHE coincide by well-specification and identifiability of the models, and

strict propriety of the H-score. We can then write

ΛT (M2,M1) =
T∑
t=1
H
(
Yt, p2(dy|θ̂mHE

2,T )
)
−

T∑
t=1
H
(
Yt, p1(dy|θ̂mHE

1,T )
)

+
2∑
j=1

RMLE
j,T +

2∑
j=1

RmHE
j,T ,

where the remainder terms for each j ∈ {1, 2} are defined as

RMLE
j,T =

T∑
t=1

(
E
[
H (Yt, pj(dy|Θj))

∣∣∣ Y1:t
]
−H

(
Yt, pj(dy|θ̂MLE

j,T )
))
,

RmHE
j,T =

T∑
t=1

(
H
(
Yt, pj(dy|θ̂MLE

j,T )
)
−H

(
Yt, pj(dy|θ̂mHE

j,T )
))
.

169



B. Supplementary material for Chapter 1

The term RMLE
j,T is controlled by how fast the posterior of Θj concentrates around θ̂MLE

j,T

and how well the posterior expectation of H(Yt, pj(dy|Θj) can be approximated by its

expectation with respect to a Dirac mass at that MLE, which would typically require

uniform integrability conditions for the posterior moments to converge. The term RmHE
j,T

is controlled by how fast θ̂mHE
j,T approaches θ̂MLE

j,T and how smooth the function (y, θj) 7→

H(y, pj(dy|θj)) is. Using the Landau notation (i.e. small and big O), we assume that

RMLE
1,T + RMLE

2,T + RmHE
1,T + RmHE

2,T = o (log T ) as T → +∞, in P?-probability, for ease of

exposition. Finally, we can reasonably assume that

T∑
t=1
H
(
Yt, p2(dy|θ̂mHE

2,T )
)
−

T∑
t=1
H
(
Yt, p1(dy|θ̂mHE

1,T )
)

= O(1) (B.31)

as T → +∞, in P?-probability. Indeed, the difference between H-score minima is analogous

to the difference between log-likelihood maxima ∑T
t=1 log p1(Yt|θ̂MLE

1,T )−∑T
t=1 log p2(Yt|θ̂MLE

2,T )

appearing when trying to prove the consistency of the log-Bayes factor (e.g. see Chib and

Kuffner, 2016). Under suitable conditions, the difference between log-likelihood maxima

converges in distribution to a scaled χ2
k2−k1 distribution (e.g. see Vuong, 1989). This is known

as Wilks’s theorem in the likelihood ratio test literature (Wilks, 1938), and its proof essentially

relies on a Taylor expansion combined with the asymptotic Normality of the MLE. Under

differentiability assumptions on the functions θj 7→
∑T
t=1H (Yt, pj(dy|θj)) and asymptotic

Normality of the M-estimators θ̂mHE
j,T (e.g. see Theorem 5.23 in Van der Vaart, 2000), we may

assume that a similar distributional result holds for the difference of H-score minima, leading

to (B.31). All the previous heuristic arguments motivate Assumption A22 stated below.

Assumption A22. ΛT (M2,M1) = o (log T ) as T → +∞, in P?-probability.

Looking now at the penalty term ∆T (M2,M1), we can define, for each j ∈ {1, 2}, the function

Gj : Y× Tj −→ R
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(yt, θj) 7−→
∂ log pj(yt|θj)

∂yt
.

Under conditions enabling the Bernstein-von Mises theorem to hold (e.g. see Theorem 1.4.2

in Ghosh and Ramamoorthi, 2003), as t→ +∞, the posterior distribution of
√
t(Θj,t− θ̂MLE

j,t )

would approach a Normal distribution with mean 0 and covariance matrix V ?
j = Ij(θ?j )−1,

where Ij(θ?j ) = E?[−∇2
θj

log pj(Y |θ?j )] corresponds to the Fisher information matrix at θ?j

when Mj is well-specified. Provided that the posterior second moments converge and Gj

is differentiable with respect to θj such that ∇θjGj(yt, θ?j ) 6= 0 for all yt ∈ Y, applying the

Delta method to the previous statement motivates Assumption A23.

Assumption A23. Var
(
∂ log pj(Yt|Θj)

∂yt

∣∣∣Y1:t
)

= ∇θjGj(Yt, θ?j )>(V ?
j /t)∇θjGj(Yt, θ?j ) + o

(
1
t

)
as

t→ +∞, P?-almost surely, for each j ∈ {1, 2}.

Using ∑T
t=1(1/t) = O(log T ) as T → +∞, and Assumption A23, we have, P?-almost surely,

∆T (M2,M1) =
T∑
t=1

1
t
Kt + o(log T ), (B.32)

where Kt =
(
∇θ2G2(Yt, θ?2)>V ?

2 ∇θ2G2(Yt, θ?2)−∇θ1G1(Yt, θ?1)>V ?
1 ∇θ1G1(Yt, θ?1)

)
. The Kt’s

are i.i.d., so that if we assume E?[K2
t ] < +∞ and define σ2 = Var? (Kt), then we have

Var?
(

T∑
t=1

1
t
Kt

)
= σ2

T∑
t=1

1
t2
−−−−→
T→+∞ σ2 π

2

6 < +∞. (B.33)

On the other hand, if we define δ21 = E?[Kt], then we have

E?
(

T∑
t=1

1
t
Kt

)
= δ21

T∑
t=1

1
t

= δ21 log T + o(log T ). (B.34)

Using Chebyshev’s inequality, combining (B.32), (B.33), and (B.34) leads to

∆T (M2,M1) = δ21 log T + o(log T ),

in P?-probability. Piecing everything together, we finally get

HT (M2)−HT (M1) = δ21 log T + o(log T ), (B.35)
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in P?-probability, where

δ21 = E?
[
∇θ2G2(Y, θ?2)>V ?

2 ∇θ2G2(Y, θ?2)−∇θ1G1(Y, θ?1)>V ?
1 ∇θ1G1(Y, θ?1)

]
. (B.36)

This implies that as T → +∞, the sign of HT (M2) − HT (M1) will be determined by

the sign of δ21. If θ2 = (θ1, η) consists of orthogonal parameters, in the sense that

E?[∇η∇θ1 log p2(Y |θ?1, η?1)] = 0 so that the Fisher information matrix I2(θ?2) is block-diagonal,

then V ?
2 has the following block-diagonal structure

V ?
2 =

 V ?
1 0

0 V ?
22

 ,

where V ?
22 = E?[−∇2

η log p2(Y |θ?2)]−1 is a symmetric positive definite matrix of size (k2 − k1).

Using (B.5.4) and the fact that ∇θ2G2(yt, θ?2)> = (∇θ1G1(yt, θ?1)>,∇ηG2(yt, θ?2)>), we get

δ21 = E?[∇ηG2(Y, θ?2)>V ?
22∇ηG2(Y, θ?2)] > 0, where the positivity comes from the positive

definiteness of V ?
22. In other words, (B.36) becomes

δ21 = E?

(∇η
∂ log p2(Y |θ?2)

∂y

)>
E?[−∇2

η log p2(Y |θ?2)]−1
(
∇η

∂ log p2(Y |θ?2)
∂y

) > 0. (B.37)

This implies HT (M2)−HT (M1) −−−−→
T→+∞ +∞, so that we asymptotically choose the smaller

model M1, as desired.

B.5.5 Illustration of parsimony with nested Normal models

We consider the following nested Normal models

M1 : Y1, ..., YT |µ1
i.i.d.∼ N

(
µ1, 1

)
, µ1 ∼ N

(
0, σ2

0

)
,

M2 : Y1, ..., YT |µ2, σ
2
2

i.i.d.∼ N
(
µ2, σ

2
2

)
, µ2 | σ2

2 ∼ N
(
0, σ2

2

)
, σ2

2 ∼ Inv-χ2
(
ν0, s

2
0

)
.

The positive hyperparameters are chosen as σ2
0 = 10, ν0 = 0.1, and s2

0 = 1. We compare

M1 and M2, using data generated as Y1, ..., YT
i.i.d.∼ N (µ?, σ2

?), in the following settings: (1)
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(µ?, σ2
?) = (0, 5), i.e. M2 is well-specified while M1 is not; (2) (µ?, σ2

?) = (0, 1), i.e. both M1

and M2 are well-specified. For each case, we generate T = 105 observations and perform 5

runs of SMC with Nθ = 1024 particles to estimate the log-Bayes factors and H-factors of M1

against M2. Each run averages the factors over 100 different orderings of the data, sampled

uniformly from all the possible permutations. The results are shown in Figure B.4.

In case 1, both factors correctly select the well-specified model M2, as expected. In case

2, M1 is nested in M2 with respective dimensions k1 = 1 and k2 = 2. Besides, the Fisher

information under the Normal model M2 is diagonal. Using the same notation as in (B.37),

we get θ?2 = (0, 1) and δ21 = 2, so that our postulated result in (B.35) becomes HT (M2)−

HT (M1) = 2 log T + o(log T ). Regarding the log-Bayes factor, standard approximation via

the BIC yields log p2(Y1:T )− log p1(Y1:T ) =
(
k2−k1

2

)
log T + o(log T ) = (1/2) log T + o(log T ).

HF 1 vs. 2

log−BF 1 vs. 2

HF 1 vs. 2

log−BF 1 vs. 2

HF 1 vs. 2

log−BF 1 vs. 2

HF 1 vs. 2

log−BF 1 vs. 2

Case 1: M1 misspecified, M2 well−specified Case 2: M1 and M2 both well−specified

0 250 500 750 1000 0 250 500 750 1000

0
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−3000

−2000

−1000
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Figure B.4. Estimated log-Bayes factors (log-BF) and H-factors (HF) of M1 against M2, computed
for 5 replications (thin solid lines), under two i.i.d. data-generating processes: N (0, 5) (Case 1)
and N (0, 1) (Case 2). Each run averages the factors over 100 random orderings of the data. The
variability within each factor is due to these random orderings and Monte Carlo error. In case
1 (left panel), this error is negligible relative to the magnitude of the factors, which makes the 5
replications hard to distinguish. In case 2 (right panel), the dot-dashed lines indicate the theoretical
logarithmic growth of each factor: they respectively correspond to t 7→ (1/2) log(t) (log-BF) and
t 7→ 2 log(t) (HF). See Appendix B.5.5.
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This appendix provides additional computational details for the derivations presented in

Section 2.3.1 of Chapter 2. It also provides additional plots to accompany the numerical

diagnostics of Section 2.3.4.

C.1 H-scores as functions of posterior expectations

We complement Sections 2.3.1.2 and 2.3.1.3 of Chapter 2 by providing explicit expressions of

the H-score as a function of posterior expectations, both in the case where the observations

are continuous (Appendix C.1.1) and discrete (Appendix C.1.2).
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C.1.1 Continuous observations

Using equation (2.21) of Section 2.3.1.2, we can write the H-score at horizon s ∈ J1, T K as

Hs(M) = hs
(
(Et,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K

)

where (Et,d,j)(t,d,j)∈J1,sK×J1,dyK×J1,2K is the vector enumerating the Et,d,j’s in the lexicographic

order of J1, sK × J1, dyK × J1, 2K induced by the natural order on N i.e.

(1, 1, 1) < (1, 1, 2) < (1, 2, 1) < ... < (1, dy, 2) < (2, 1, 1) < ............ < (s, dy, 2)

and hs is a continuously differentiable function defined for all ξ = (ξj)j∈J1,2dysK ∈ Rs×dy×2 by

hs (ξ) =
s∑
t=1

dy∑
d=1

(
2 ξ2dy(t−1)+2d−1 −

(
ξ2dy(t−1)+2d

)2
)

(C.1)

whose gradient can be concisely obtained in terms of its subcomponents as

∇hs (ξ) =
s⊔
t=1

dy⊔
d=1

(
2

−2 ξ2dy(t−1)+2d

)
(C.2)

where ⊔ denotes the concatenation operator that vertically stacks from top to bottom

an ordered collection of vectors.

C.1.2 Discrete observations

Using equation (2.23) of Section 2.3.1.3, the H-score at horizon s ∈ J1, T K can be written as

Hs(M) = hs
(
(pt,d,j)(t,d,j)∈J1,sK×J1,dyK×J−2,2K

)

where (pt,d,j)(t,d,j)∈J1,sK×J1,dyK×J−2,2K is the vector enumerating the pt,d,j’s in the lexicographic

order of J1, sK× J1, dyK× J−2, 2K induced by the natural order on Z, and hs is a continuously

differentiable function defined for all ξ = (ξj)j∈J1,5dysK ∈ Rs×dy×5 by

hs (ξ) =
s∑
t=1

dy∑
d=1

vt,d,2 − vt,d,0
2 vt,d,1

− vt,d,0 − vt,d,−2

2 vt,d,−1
+
(
vt,d,1 − vt,d,−1

2 vt,d,0

)2
 (C.3)
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with vt,d,j = ξ5dy(t−1)+5d+(j−2) for j ∈ J−2, 2K, and its gradient can be written as

∇hs (ξ) =
s⊔
t=1

dy⊔
d=1



1
2 vt,d,−1

vt,d,0 − vt,d,−2

2 v2
t,d,−1

− vt,d,1 − vt,d,−1

2 v2
t,d,0

− 1
2 vt,d,1

− 1
2 vt,d,−1

− (vt,d,1 − vt,d,−1)2

2 v3
t,d,0

−vt,d,2 − vt,d,0
2 v2

t,d,1
+ vt,d,1 − vt,d,−1

2 v2
t,d,0

1
2 vt,d,1



(C.4)

or more explicitly

∇hs (ξ) =
s⊔
t=1

dy⊔
d=1



1
2 ξ5dy(t−1)+5d−3

ξ5dy(t−1)+5d−2 − ξ5dy(t−1)+5d−4

2 ξ2
5dy(t−1)+5d−3

−
ξ5dy(t−1)+5d−1 − ξ5dy(t−1)+5d−3

2 ξ2
5dy(t−1)+5d−2

− 1
2 ξ5dy(t−1)+5d−1

− 1
ξ5dy(t−1)+5d−3

−
(ξ5dy(t−1)+5d−1 − ξ5dy(t−1)+5d−3)2

2 ξ3
5dy(t−1)+5d−2

−
ξ5dy(t−1)+5d − ξ5dy(t−1)+5d−2

2 v2
t,d,1

+
ξ5dy(t−1)+5d−1 − ξ5dy(t−1)+5d−3

2 ξ2
5dy(t−1)+5d−2

1
2 ξ5dy(t−1)+5d−1



for all ξ = (ξj)j∈J1,5dysK ∈ Rs×dy×5.
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C.2 Assessing the variance of log-evidence estimators

In the context of Section 2.3.4.1, we use R = 1000 independent runs of SMC 2 with Nθ = 8192

and Nx = 128 to produce R independent estimators (log Ẑ(r)
M2,t, log Ẑ(r)

M3,t)(t,r)∈J1,T K×J1,R K of the

log-evidences of models M2 and M3. To assess the variance of the estimators log ẐM2,t and

log ẐM3,t at every horizon t ∈ J1, T K, we compute the sample variances of (log Ẑ(r)
M2,t)r∈J1,RK

and (log Ẑ(r)
M3,t)r∈J1,RK across the R replications, for each horizon t ∈ J1, T K, as shown in Figure

C.1. This plot complements Figure 2.5 by quantifying the spread of each histogram displayed

there. From Figure C.1, the variance of log Ẑt seems to grow linearly as t increases, which is

in line with the expected behavior of SMC estimators for a fixed number of particles (Del

Moral et al., 2006; Chopin et al., 2013). There appears to be a peculiar excess in variance at

horizon t = 4, perhaps due to the seemingly unusual informativeness of the corresponding

observation at that particular time (see Figure 1.4 in Chapter 1).

Sample variance of estimated log−evidence

M
odel 2

M
odel 3

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.000

0.002

0.004

0.006

0.008

Time (number of observations)

Figure C.1. Sample variance of the estimated log-evidences log Ẑt of models M2 (top panel, yellow
line) and M3 (bottom panel, blue line) for each time horizon t ∈ J1, 41K, obtained from R = 1000
independent runs of SMC 2 with Nθ = 8192 and Nx = 128. See Appendix C.2.
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This appendix provides detailed proofs of Lemmas 6 to 10 from Chapter 3. Recall that

for all positive semi-definite symmetric matrices A ∈ Rd×d and all vectors x ∈ Rd, we

have the inequalities λ1(A)‖x||2 ≤ xTAx ≤ λd(A)‖x‖2 and |xTAx| ≤ ‖A‖ ‖x‖2, where

‖A‖ denotes the spectral norm of A.

D.1 Proof of Lemma 6

Proof. We place ourselves on an intersection of events of P?-probability equal to 1, on which

Assumptions A2 to A6 simultaneously hold. Let’s fix any arbitrary ε > 0. By Assumption

A6, there exists δ?ε > 0 and N?
ε ∈ N such that θ 7→ `n(θ) is twice continuously differentiable
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on {‖θ − θ?‖ < δ?ε} and such that, for all δ ≤ δ?ε and all N ≥ N?
ε , we have

sup
‖θ−θ?‖<δ
n>N

∥∥∥∥∥∇2`n(θ)
n

∥∥∥∥∥ ≤ sup
‖θ−θ?‖<δ?ε
n>N?

ε

∥∥∥∥∥∇2`n(θ)
n

∥∥∥∥∥ < ‖−J?‖+ ε. (D.1)

Let’s define δε = min
(√

ε
[

5
2 (‖ − J?‖+ ε)

]−1
, δ?ε

)
, so that 0 < δε ≤ δ?ε .

By Assumption A4, there exists Nδε ∈ N such that ‖θ̂n − θ?‖ < δε for all n > Nδε .

Let’s define Nε = max(Nδε , N
?
ε ).

Since θ 7→ `n(θ) is twice continuously differentiable on {‖θ − θ?‖<δε} ⊆ {‖θ − θ?‖<δ?ε}, the

triangle inequality and 2nd order Taylor’s theorem with ∇`n(θ̂n) = 0 gives us
∣∣∣∣ 1n`n(θ)− 1

n
`n(θ?)

∣∣∣∣ ≤ ∣∣∣∣ 1n`n(θ)− 1
n
`n(θ̂n)

∣∣∣∣+ ∣∣∣∣ 1n`n(θ̂n)− 1
n
`n(θ?)

∣∣∣∣
≤ 1

2

∣∣∣∣∣(θ − θ̂n)T∇
2`n(θ′n)
n

(θ − θ̂n)
∣∣∣∣∣+ 1

2

∣∣∣∣∣(θ? − θ̂n)T∇
2`n(θ′′n)
n

(θ? − θ̂n)
∣∣∣∣∣

for all θ ∈ {‖θ − θ?‖ < δε} and all n > Nε, where we implicitly define θ′n = γ′θ + (1− γ′)θ̂n

and θ′′n = γ′′θ? + (1− γ′′)θ̂n for some (γ′, γ′′) ∈ [0, 1]2.

Since ‖θ′n − θ?‖ < δε and ‖θ′′n − θ?‖ < δε with δε ≤ δ?ε , and Nε > N?
ε , we use (D.1) to get

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣ ≤ 1
2

∥∥∥∥∥∇2`n(θ′n)
n

∥∥∥∥∥ ‖θ − θ̂n‖2 + 1
2

∥∥∥∥∥∇2`n(θ′′n)
n

∥∥∥∥∥ ‖θ? − θ̂n‖2

≤ 1
2 sup
‖θ−θ?‖<δε
n>Nε

∥∥∥∥∥∇2`n(θ)
n

∥∥∥∥∥ (4 δ2
ε) + 1

2 sup
‖θ−θ?‖<δε
n>Nε

∥∥∥∥∥∇2`n(θ)
n

∥∥∥∥∥ (δ2
ε)

≤ 5
2 (‖ − J?‖+ ε) δ2

ε

≤ ε.

This holds for all θ ∈ {‖θ − θ?‖ < δε} and all n > Nε, so that we finally get

sup
‖θ−θ?‖<δε
n>Nε

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣ < ε

which concludes the proof of Lemma 6.
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D.2 Proof of Lemma 7

Proof. We place ourselves on an intersection of events of P?-probability equal to 1, on which

Assumptions A2 to A6 and Lemma 6 simultaneously hold. Let’s fix any arbitrary ε > 0. By

Lemma 6, there exists δε/2 > 0 and Nε/2 ∈ N such that

sup
‖θ−θ?‖<δε/2
n>Nε/2

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣ < ε

2 . (D.2)

By Assumptions A2 and A4, there exists Nε > Nε/2 such that, for all n > Nε, we have both

‖θ̂n − θ?‖ < δε/2 and
∣∣∣∣ 1n`n(θ?)− `(θ?)

∣∣∣∣ < ε

2 . (D.3)

Using (D.2) and (D.3), the triangle inequality gives us, for all n > Nε > Nε/2,

∣∣∣∣ 1n`n(θ̂n)− `(θ?)
∣∣∣∣ ≤ ∣∣∣∣ 1n`n(θ̂n)− 1

n
`n(θ?)

∣∣∣∣+ ∣∣∣∣ 1n`n(θ?)− `(θ?)
∣∣∣∣

≤ sup
‖θ−θ?‖<δε/2
n>Nε/2

∣∣∣∣ 1n`n(θ)− 1
n
`n(θ?)

∣∣∣∣+ ∣∣∣∣ 1n`n(θ?)− `(θ?)
∣∣∣∣

< ε

This holds for all n > Nε, therefore we get

sup
n>Nε

∣∣∣∣ 1n`n(θ̂n)− `(θ?)
∣∣∣∣ < ε

which concludes the proof of Lemma 7.

D.3 Proof of Lemma 8

Proof. We place ourselves on an intersection of events of P? probability 1, on which As-

sumptions A2 to A5 and Lemma 7 simultaneously hold. Let’s fix any arbitrary δ > 0.
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By consistency of the MLE (Assumption A4), there exists Nδ/2 ∈ N such that we have

‖θ̂n − θ?‖ ≤ δ/2 for all n > Nδ/2. By the reverse triangle inequality, if ‖θ − θ̂n‖ ≥ δ, then

‖θ − θ?‖ ≥ ‖θ − θ̂n‖ − ‖θ̂n − θ?‖ ≥ δ − δ/2 = δ/2.

Thus, for all n > Nδ/2, we have

{‖θ − θ̂n‖ ≥ δ} ⊆ {‖θ − θ?‖ ≥ δ/2}. (D.4)

By using (D.4) with Assumption A5, there exists η?δ/2 > 0 and Nη?
δ/2

> Nδ/2 such that

sup
‖θ−θ̂n‖≥δ

1
n
`n(θ) ≤ sup

‖θ−θ?‖≥δ/2

1
n
`n(θ) < `(θ?)− η?δ/2 (D.5)

for all n > Nη?
δ/2

. By Lemma 7, there exists Nδ > Nη?
δ/2

such that, for all n > Nδ, we have
∣∣∣∣ 1n`n(θ̂n)− `(θ?)

∣∣∣∣ < η?δ/2
2

which implies

1
n
`n(θ̂n) > `(θ?)−

η?δ/2
2 . (D.6)

Let’s fix ηδ = η?
δ/2
2 > 0. Then, by combining (D.5) and (D.6), we obtain, for all n > Nδ,

sup
‖θ−θ̂n‖≥δ

1
n
`n(θ) <

1
n
`(θ̂n)− ηδ

which concludes the proof of Lemma 8.

D.4 Proof of Lemma 10

Proof. We place ourselves on an intersection of events of P? probability 1, on which Assump-

tions A4 and A6 simultaneously hold. Let’s fix any arbitrary ε > 0.

By Assumption A6, there exists δ?ε > 0 and N?
ε ∈ N such that

sup
‖θ−θ?‖<δ?ε
n>N?

ε

∥∥∥∥ 1
n
∇2`n(θ) + J?

∥∥∥∥ < ε. (D.7)
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By consistency of the MLE (Assumption A4), there exists Nε ≥ N?
ε such that ‖θ̂n − θ?‖ < δ?ε

for all n > Nε. Combining this with (D.7) gives us, for all n > Nε ≥ N?
ε ,∣∣∣∣ 1n∇2`n(θ̂n) + J?

∣∣∣∣ ≤ sup
‖θ−θ?‖<δ?ε
n>N?

ε

∥∥∥∥ 1
n
∇2`n(θ) + J?

∥∥∥∥ < ε.

Since this holds for all n > Nε, we finally get

sup
n>Nε

∣∣∣∣ 1n∇2`n(θ̂n) + J?
∣∣∣∣ < ε.

which concludes the proof of Lemma 10.
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